首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
为了探索叶片数在固液两相流条件下对高比转速离心泵非定常特性的影响情况,利用ANSYS CFX软件,采用Mixture多相流模型,对4种不同叶片数离心泵的固液两相湍流进行了非定常数值模拟,分析了叶片数对固液两相流离心泵瞬时扬程、压力、压力脉动及径向力的影响。研究结果表明:① 随着叶片数量的增多,固液两相流离心泵的瞬时扬程增大,波动频率变快,蜗壳内及隔舌处的压力值越来越大,波动频率变快,脉动幅值反而越来越小,叶轮上的径向力会减小,隔舌处的径向力会增大;② 不同叶片数的固液两相流离心泵蜗壳内及隔舌处的压力脉动主频均出现在其叶频处;③ 叶片数为5时,是蜗壳的内压力值和压力脉动幅值增减速度快慢的分界点,也是叶轮上及隔舌处径向力大小增减速度快慢的分界点。  相似文献   

2.
离心泵蜗壳内压力脉动特性数值分析   总被引:2,自引:1,他引:1  
为揭示离心泵蜗壳流道内的压力脉动变化规律,采用雷诺时均方法(RANS),对3种工况下的离心泵内部三维非定常湍流流场进行数值计算,分析同一蜗壳断面不同位置以及沿蜗壳周向不同点的压力脉动特性。结果表明:蜗壳流道内具有非常明显的压力脉动,在各种工况下压力脉动的主频均是叶片通过频率;同一蜗壳断面上的压力脉动从蜗壳底部到蜗壳背面先减小后增大,蜗壳底部监测点的高频脉动成分较多;沿蜗壳周向,随着圆周角的增大,压力脉动减弱,隔舌附近压力脉动幅度最大,且高频脉动成分明显增加。  相似文献   

3.
叶莉 《人民长江》2017,48(3):91-96
为了研究螺旋形蜗壳内部流动规律以及不同隔舌安放角对离心泵内部流动特性的影响,基于ANSYSCFX14.5对5种不同隔舌安放角的离心泵模型进行了定常与非定常计算和数据分析,并对离心泵的水力特性进行了实验验证。分析结果表明,随着隔舌安放角的增大,离心泵的高效区明显加宽,但是设计工况附近的水力性能稍有下降,其中在大流量区域,隔舌安放角的作用比较明显;隔舌安放角的不同主要对非设计工况下离心泵内部流体流态影响较大,其中在小流量工况时,随着隔舌安放角的变小,叶轮各流道内的流体流态分布的对称性明显改善,在大流量工况下,随着蜗壳隔舌安放角的减小,蜗壳出口段垂直截面方向的速度梯度变大;隔舌安放角的不同对叶轮所受径向力的影响很小,不同隔舌安放角的离心泵所对应的径向力分布规律几乎一致。  相似文献   

4.
为了揭示隔舌对离心泵内流场的压力脉动变化规律,采用商业软件ANSYS-cfx,对0.8Q、1.0Q和1.2Q的离心泵进行三维非定常数值模拟计算,分析在同一工况下不同位置监测点的压力脉动特性。结果表明:受到隔舌影响流道内各观察点的压力脉动出现非常显著的周期性,而且在0.8Q、1.0Q、1.2Q工况下的5个监测点主频都出现在1倍叶频处。随着观察点与隔舌周向距离变大,脉动幅度逐渐减小,这时脉动主要是叶片通过频率,高频脉动成分较少。  相似文献   

5.
自吸泵内能量损失及非定常流动特性研究   总被引:1,自引:0,他引:1  
舒欣  任芸  吴登昊  祝之兵  牟介刚 《水利学报》2019,50(8):1010-1020
自吸泵由于其特有的气液分离腔和回流孔结构使得其内部流动更为复杂,本文针对自吸泵内能量损失及非定常流动特性开展实验和数值研究。通过开展模型泵水力性能实验,发现数值计算结果与实验结果具有较好一致性。利用熵产理论和Q准则定量分析了不同工况下自吸泵内不同区域的能量损失特性及涡核分布特征,结果表明:泵内熵产分布特征与水力损失分布特征基本一致,叶轮、蜗壳和气液分离腔是自吸泵内能量损失的主要区域。蜗壳内部的压力脉动强度在靠近隔舌区域较大,蜗壳中段处变弱,蜗壳出口扩散段处又进一步增强。在小流量工况下,叶轮和蜗壳内部涡核分布面积较大,涡核主要分布在叶轮的进口处和出口处。  相似文献   

6.
为了研究叶片包角对中比转速离心泵水力振动的影响,以一台比转速为103的中比转速离心泵为研究对象,探讨叶片包角分别为116°、122°、128°的3种离心泵在不同的流量工况下的外特性特征,设计流量下叶轮流道、蜗壳流道内监测点的压力脉动特性。研究结果表明:存在一个最佳的叶片包角122°使中比转速离心泵的扬程和效率最高,且最佳效率点向大流量点偏移;叶轮流道内各监测点的压力脉动随叶片包角的增大而逐渐降低,而各压力脉动幅值随叶片包角的增大而逐渐增大;蜗壳螺旋段内的压力脉动值沿流体流动方向逐渐减弱;随着叶片包角的增加,蜗壳流道内监测点的压力值逐渐增大,隔舌监测点和出口处监测点的压力脉动幅值也同步增大,而蜗壳螺旋段内监测点的压力脉动幅值逐渐减小。综合考虑适当地增大叶片包角可以减小离心泵的水力振动。  相似文献   

7.
因叶轮与导叶的周向相对位置变化而产生的时序效应对水泵性能有直接影响。本文针对一台两级叶轮均为6叶片的双进口两级双吸离心泵首级叶轮、过渡流道和第二级叶轮所组成的相位分别为0°、15°、30°及45°等4种方案,对0.6Q、1.0Q及1.2Q等3种典型工况下的水泵瞬态特性进行了研究,分析了过流部件压力脉动频域特征,总结了压力脉动及叶轮径向力变化规律。研究表明:两级双吸离心泵叶轮相位对水泵扬程及效率的影响不显著,偏差在2%以内,但相位对水泵过渡流道和压水室压力脉动影响大,在设计工况下,相对于0°、15°及45°方案,30°方案对过渡流道入口隔舌处压力脉动主频幅值削减度分别达70%、38%和40%;对压水室隔舌处压力脉动主频幅值削减度分别达31%、18%和22%。4种方案对应的离心泵叶轮径向力在各工况下均呈周期性变化,且30°方案下叶轮所受到径向力最小。为保证水泵安全稳定运行,建议两级双吸离心泵首级叶轮与第二级叶轮在圆周向呈对称交错安装。本文研究成果为高扬程多级离心泵的优化设计和稳定运行提供了科学依据。  相似文献   

8.
应用N-S方法和标准k-ε湍流模型,采用SIMPLE法,对离心泵内部三维固液两相流进行了模拟计算。得到不同固相(颗粒)浓度下的离心泵内部压力分布和内部颗粒浓度分布情况,并且基于流固耦合原理对离心泵叶轮进行结构分析,采用多物理场协同仿真平台ANASYS Workbench,通过单向流固耦合技术实现离心泵叶轮结构的仿真计算,获得了离心泵叶轮在同一工况、不同固相浓度下的等效应力及变形情况。计算结果表明,蜗壳中压力和固相体积浓度分布规律都是从进口处随蜗壳半径增大而增大,并且在隔舌处出现浓度分布不均匀的现象。各种计算条件下,叶轮的等效应力和总变形情况变化趋势基本上相同,叶轮的应力分布都不均并且存在局部应力集中,固相体积浓度越大离心泵叶片的变形也越严重。  相似文献   

9.
为探究高速离心泵内部空化的演变过程对其稳定性产生的影响。对高速离心泵的内部空化流动及非定常下的多维空间监测点压力脉动进行模拟计算,研究叶片空间上的空泡体积分数占比情况,叶轮流道中三维空化由弱到强的过程对隔舌及叶轮出口的压力脉动影响。研究结果表明:各叶片上的空泡体积分数随着空化系数及流量系数的减小而逐渐增加;在空化相对较小时,对隔舌及出口的压力脉动影响变化速率较为平缓,在空化较严重时,对隔舌及出口的压力脉动影响较大,且影响变化速度较大时空化系数的界点为σ=0.086附近。  相似文献   

10.
离心泵蜗壳进口边对叶轮径向力影响的数值模拟   总被引:1,自引:0,他引:1  
保证蜗壳过流断面面积和基圆直径不变,通过改变蜗壳进口边宽度,采用SST湍流模型分别对不同蜗壳进口边匹配同一叶轮离心泵进行全流道非稳态数值模拟。通过数值模拟分别得到不同蜗壳进口边的离心泵外特性及径向力特性,并对其进行分析。结果表明:适当改变蜗壳进口边对离心泵扬程、效率影响不大;同一工况下,叶轮上径向力的大小和方向时刻都在改变,且受叶轮与蜗壳动静干涉的影响呈现六角星分布,蜗壳上径向力呈现近似椭圆分布;较小蜗壳进口边的离心泵其叶轮和蜗壳上所受的径向力较小,说明较小蜗壳进口边能够改善离心泵的径向力。  相似文献   

11.
流道喷涂技术能有效提高水泵过流部件抗磨损能力并降低水力损失,但其对压力脉动特性的影响并不明确。本文采用试验的方法,对一双吸离心泵流道喷涂前后的压力脉动进行同台测试,并分析了混频幅值和频谱特性。结果表明:流道喷涂处理降低了流道粗糙度,减小了水力损失,提高了效率,但同时也改变了水泵固有的压力脉动特性。对于吸水室,喷涂处理缩小了压力脉动稳定区的范围,使小流量工况区的压力脉动峰峰值达到喷涂处理前的2.8倍,加剧了水泵在小流量工况下运行的不稳定性。对于压水室,喷涂处理使靠近隔舌区域在小流量区的压力脉动明显增加,使远离隔舌区域在大流量区的压力脉动增加。而在设计流量区域,喷涂对各个位置压力脉动影响不明显。为了使喷涂技术发挥综合效果,保证水泵运行稳定,应该尽量避免喷涂后的水泵在偏离设计流量工况运行,特别是严格避免水泵在低于0.75倍设计流量工况运行。  相似文献   

12.
双吸离心泵运行时,动静干涉会引起特定压力脉动,其频率为叶轮转频与叶片数相乘,即叶频。前期研究表明叶频压力脉动主要产生于压水室的隔舌区域,是引起水泵机组和泵房振动的重要激振源。为了揭示双吸离心泵系统压力脉动和振动特性的关系,开展了泵站压力脉动和振动特性的现场试验。通过在泵基础、出水管和泵房楼板位置布置振动传感器,同步测量了泵出口阀门不同开度下和泵启动开阀过程中的振动信号,借助时频分析方法开展了泵房振动信号的溯源分析。分析结果表明:在稳态工况中,水泵压力脉动和振动的相干性主要表现在转频、叶频及其倍频,且叶频压力脉动具有向上游衰减快,向下游衰减慢的特点;在启动工况中,水泵压水室压力脉动与基座(特别是垂直方向),甚至泵房出水侧楼板振动在叶频和转频处表现出相干性。根据现场测试结果认为,干室型双吸离心泵泵房在设计时,需要重点关注水泵叶频压力脉动作用下出水侧楼板等泵房结构的动力学响应问题。  相似文献   

13.
双吸离心泵吸水室和压水室压力脉动特性试验研究   总被引:4,自引:2,他引:2  
双吸离心泵压力脉动是影响水泵机组运行稳定性的关键因素之一。采用试验的方法,分别在吸水室和压水室的壁面布置压力脉动传感器,采集各个测试流量下的压力脉动信号,进行混频幅值和频谱分析。结果表明,低于轴频的低频脉动和轴频脉动在吸水室区域占主导地位。在额定流量和大流量工况下,低频脉动频率主要为1/3倍的轴频。在小流量工况下,该低频脉动影响范围显著扩大,幅值明显增大。叶频脉动在隔舌区域非常强烈,是压水室区域的主导脉动成分,沿压水室圆周方向传播并耗散脉动能量。当偏离额定工况时,压水室压力脉动峰峰值显著增加,尤其是在小流量工况,该幅值达到额定工况下相应值的5~6倍。  相似文献   

14.
基于雷诺时均方程和RNG k-ε湍流模型,应用SIMPLE算法,对混流泵内部流场进行非定常数值模拟,分析不同工况监测点上压力脉动的时域特性和频域特性。取定常计算的外特性与实验值对比,对比结果为不同工况的扬程偏差均小于5%,证明该数值模型能准确地描述泵内流场特征。结果表明:叶片进口处水流冲击产生的回流和漩涡是引起叶轮内压力脉动的主要动力源,叶轮与蜗壳间的动静相干作用是产生蜗壳内压力脉动的主要动力,并且在向下游传播过程中,压力脉动逐渐减弱,叶频占主导地位,在小流量工况运行时,主频有向叶轮转频迁移的趋势,大流量工况下最大压力脉动发生在转轮中间位置;叶轮内的压力脉动要远远高于蜗壳,这是引起机组振动和噪声的主要来源。  相似文献   

15.
Numerical simulation and 3-D periodic flow unsteadiness analysis for a centrifugal pump with volute are carried out in whole flow passage, including the impeller with twisted blades, the volute and the side chamber channels under a part-load condition. The pressure fluctuation intensity coefficient (PFIC) based on the standard deviation method, the time-averaged velocity unsteadiness intensity coefficient (VUIC) and the time-averaged turbulence intensity coefficient (TIC) are defined by averaging the results at each grid node for an entire impeller revolution period. Therefore, the strength distributions of the periodic flow unsteadiness based on the unsteady Reynolds-averaged Navier-Stokes (URANS) equations can be analyzed directly and in detail. It is shown that under the 0.6Qd~. condition, the pressure fluctuation intensity is larger near the blade pressure side than near the suction side, and a high fluctuation intensity can be observed at the beginning section of the spiral of the volute. The flow velocity unsteadiness intensity is larger near the blade suction side than near the pressure side. A strong turbulence intensity can be found near the blade suction side, the impeller shroud side as well as in the side chamber. The leakage flow has a significant effect on the inflow of the impeller, and can increase both the flow velocity unsteadiness intensity and the turbulence intensity near the wall. The accumulative flow unstea- diness results of an impeller revolution can be an important aspect to be considered in the centrifugal pump optimum design for obtaining a more stable inner flow of the pump and reducing the flow-induced vibration and noise in certain components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号