首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
《Ceramics International》2020,46(6):7396-7402
Nanocrystalline CuInS2 thin films were deposited on borosilicate glass substrates via chemical spray pyrolysis method. The structural, morphological, optical, and electrical properties were studied as a function of increasing annealing temperature from 250 to 350 ̊C. XRD analysis showed mixed phases at lower temperatures with the preferred orientation shifting towards the (112) chalcopyrite CuInS2 plane at higher substrate temperature. The crystallite size increased slightly between 13 and 18 nm with increase in annealing temperature. The optical band gap was determined on basis of Tauc extrapolation method and the Wemple–Di-Domenico single oscillator model. Possible structural and quantum confinement effect may have resulted in relatively larger band gaps of 1.67–2.04 eV, relative to the bulk value of 1.5 eV. The presence of CuxS in the as-deposited and wurtzite peaks after annealing at 350 ̊C play a role in influencing the optical and electrical properties of CuInS2 thin films.  相似文献   

2.
In this study, the phosphotungstic acid /p-Si diode was fabricated by a drop coating method. The fabricated diode had excellent rectifying properties. The electrical properties of the diode were investigated in the temperature range of 50-400 K. The optical band gap of the phosphotungstic acid film was determined and found to be 3.66 eV. The electrical and photoresponse properties of an Al/p-Si-phosphotungstic acid/Al photodiode were studied. The electronic parameters such as ideality factor (n), barrier height (Φ B ) and series resistance (R s ) were found to be strongly temperature dependent.  相似文献   

3.
《Ceramics International》2016,42(5):6273-6281
This work deals with some physical investigation on SnO2–ZnSnO3 ceramics grown on glass substrates at different temperatures (450 °C and 500 °C). Structural and optical properties were investigated using X-Ray diffraction (XRD), Raman, infrared (IR) absorption (FTIR), UV–visible spectroscopy and Photoluminescence (PL) techniques. XRD results revealed the existence of a mixture of SnO2/ZnSnO3 phases at different annealing temperatures. Structural analysis showed that both phases are polycrystalline. On the other hand, the optical constants (refractive index, extinction coefficient and the dielectric constants) have been obtained by the transmittance and the reflectance data. The optical band gap energy changed from 3.85 eV to 3.68 eV as substrate temperature increased from 450 °C to 500 °C. Raman, FTIR modes and PL reinforced this finding regarding the existence of biphasic (SnO2 and ZnSnO3) which is detected also by X-Ray diffraction analysis. Finally, the Lattice Compatibility Theory was evoked for explaining the unexpected incorporation of zinc ions in a rhombohedral structure within SnO3 trigonal lattice, rather than the occupation of SnO2 available free loci. All the results have been discussed in terms of annealing temperature.  相似文献   

4.
In this investigation, the optical properties of the thermally evaporated SnO2 films and their dependence on the heat treatment were studied. The transmittance, T (λ), spectra were measured over the spectral range of 0.2 to 0.8 μm for SnO2 films that were annealed at different temperatures (300, 350, 400, 450, 500, 550 and 600 K) in vacuum for 1h. All films showed high transparency in the visible range and increased with increasing the wavelength. These films have become more transparent after annealing at different temperatures. The optical constants of annealed SnO2 films were obtained by modeling the measured transmission spectra. The best fit modeling of transmission spectra was obtained by applying Drude and OJL models combined with the effective medium approximation Bruggeman model. Increasing the annealing temperatures decreased both the refractive index and the extinction coefficient of the films. While the optical band gap energy increased from 3.05 to 4.11 eV by increasing the annealing temperature from 300 to 600 K, respectively. Analyzing the refractive index dispersion by using the Wemple-DiDomenico model revealed that the oscillator resonance energy Eo decreased whereas the oscillator dispersion energy Ed increased with increasing the annealing temperature.  相似文献   

5.
Highly nanocrystalline ZnO modified methyl glycol thin films have been deposited on a p-type silicon substrate via the sol–gel spin coating manner. The morphology of the as-deposited film was scrutinized using scanning electron microscopy. IV characteristics of the as-prepared ZnO film under vacuum and in open air were monitored. The results showed that the ZnO films have a barrier height of 0.38 eV under vacuum and 0.62 eV in open air. The Schottky barrier height between ZnO grains was determined for different reducing gases. The ZnO film showed high sensitivity to H2S gas compared with other reducing gases due to the reduction of barrier height between ZnO grains. The as-prepared ZnO film was annealed at four different temperatures. X-ray diffraction manifested that the wurtzite hexagonal structure of ZnO deviated from ideality at annealing temperature greater than 650 °C. The barrier height of ZnO film decreased due to the increase of annealing temperature up to 650 °C and then decreased. The results also confirmed that the change of barrier height strongly affected the sensitivity of ZnO film.  相似文献   

6.
Immobilizing the photocatalyst in a water treatment process design is essential; however, the immobilization method may affect the photoactivity of the photocatalyst. In this work, photocatalyst powders were successfully coated on 316 L stainless steel plates by a novel brush coating method. Three combinations of photocatalyst mixtures (pure TiO2 anatase, anatase doped with WO3, or TiO2 rutile) were and annealed at different temperatures between 460-540°C. The ~ 10 μm thick coatings demonstrated full plate coverage and strong adhesion and adequate durability. Surface roughness increased with annealing temperature. The doping and annealing process enabled band gap reduction to the visible light spectrum for all coatings, with the smallest band gap being 2.48 eV (1 eV = 1.6 × 10−19 J). Subsequent methylene blue degradation tests under UV-C showed that the coatings annealed in 460°C exhibited the best performance and with the highest degradation rate constant of 5.59 hours−1.  相似文献   

7.
《Ceramics International》2022,48(7):9817-9823
Electrical and optical properties of In-Ga-Sn-O (IGTO) thin films deposited by radio-frequency magnetron sputtering were investigated according to annealing temperatures. While IGTO films remained an amorphous phase even after a heat treatment at temperature up to 500 °C, Hall measurements showed that annealing temperature had a significant impact on electrical properties of IGTO thin films. After investigating a wide range of annealing temperatures for samples from as-deposited state to 500 °C, IGTO film annealed at 200 °C exhibited the best electrical performance with a conductivity of 229.31 Ω?1cm?1, a Hall mobility of 36.89 cm2V?1s?1, and a carrier concentration of 3.85 × 1019 cm?3. Changes in proportions of oxygen-related defects and percentages of Sn2+ and Sn4+ ions within IGTO films according to annealing temperatures were analyzed with X-ray photoelectron spectroscopy to determine the cause of the superb performance of IGTO at a low temperature. In IGTO films annealed at 200 °C, Sn4+ ions acting as donor defects accounted for a high percentage, whereas hydroxyl groups working as electron traps showed a significantly reduced percentage compared to the as-deposited film. Optical band gaps of IGTO films obtained from UV–visible spectrum were 3.38–3.47 eV. The largest band gap value of 3.47 eV for the IGTO film annealed at 200 °C could be attributed to an increase in Fermi-level due to an increase of carrier concentration in the conduction band. These spectroscopic results well matched with electrical properties of IGTO films according to annealing temperatures. Excellent electrical properties of IGTO thin films annealed at 200 °C could be largely due to Sn donors besides oxygen vacancies, resulting in a significant increase in free carriers despite a low annealing. temperature.  相似文献   

8.
《Ceramics International》2023,49(15):24922-24930
Although considerable research works have witnessed the important modulations of oxygen vacancies on the optical, electrical, and magnetic properties of SnO2 nanostructures, it is not easy to control oxygen vacancy defects in such systems.The difficulty stems from that oxygen vacancy is a kind of atomic defect, and its distribution is sensitive to process conditions and external factors, which makes direct characterization and purposeful control difficult. The purpose of this work on Ce-doped SnO2 nanocrystals is to investigate the tolerance of the host lattice to Ce ions, the population and evolution of Ce3+/Ce4+ ions, and the possibility to adjust oxygen vacancies by Ce3+ ions, and then focus on the influence of oxygen vacancy defects on the band gap and luminescence performance. As Ce doping concentration increases from 0 to 12 at.%, the doped system changes from Ce3+ dominated at low doping amount (≤3 at.%) to Ce3+/Ce4+ coexistence at medium doping concentration (3 at.% ∼ 9 at.%), to occurrence of CeO2 impurity phase at over doping (∼12 at.%). The optimum doping occurs at 6 at.%, which corresponds to the saturated critical point of Ce3+ content and the maximum oxygen vacancy concentration. Importantly, the oxygen vacancies in the current Ce-doped SnO2 nanocrystals is directly regulated by the Ce3+ ion concentration on the Sn sites, which plays an important role in the band gap tuning and visible light emission. With Ce concentration increasing from 0 to 12 at.%, the band gap monotonicity decreases from 3.36 eV to 3.12 eV, while the intensity of the oxygen vacancy luminescence band first increases and then decreases, with the turning point at 6 at.%. Both band gap narrowing effect and enhanced emission indicate that Ce-doped SnO2 should be a promising method to design and manufacture visible light responsive SnO2 based optoelectronic materials by manipulating oxygen vacancy defects.  相似文献   

9.
《Ceramics International》2023,49(4):5728-5737
Highly transparent and conductive pure (SnO2) and aluminum doped tin oxide (Al:SnO2) thin films were deposited on glass substrates by the sol-gel spin-coating method. The structural, morphological, optical and electrical properties of the prepared thin films at different doping rates have been studied. X-ray diffraction results revealed that all the films were polycrystalline in nature with a tetragonal rutile structure. SEM images of the analyzed films showed a homogeneous surface morphology, composed of nanocrystalline grains. The EDS results confirmed the presence of Sn and O elements in pure SnO2 and Sn, O, Al in doped SnO2 thin films. The optical results revealed a high transmittance greater than 85% in the visible and near infrared and a band gap varying between 3.82 and 3.89 eV. PL spectra at room temperature showed that the most dominant defects correspond to oxygen vacancies. A low resistivity of order varying between 10?3 and 10?4 Ω cm and a high figure of merits ranging between 10?3 and 10?2 Ω?1 in the visible range were obtained. The best performances were obtained for samples containing 2 at. % Al, which could be used as an alternative TCO layer for future optoelectronic devices.  相似文献   

10.

Tin oxide and sulfur, nitrogen-doped tin oxide nano-powder catalysts were prepared by a solid phase reaction at room temperature, using the sodium p-toluene sulfonate (STS) surfactant as template. Theoretical calculation of the dehydration reaction energy of tin hydroxide was performed with the framework of DFT and their structures were characterized. And the UV-light degradation performance and mechanism used for the biomass wastewater were discussed, as well as, its COD and NH3-N value. The results show that the large gap of the reaction energy between intramolecular dehydration (Er?=?2.81 eV) and intermolecular dehydration (Er?=?5.77 eV) for tin hydroxide causes the presence of amorphous SnO2 and metastable tin hydroxide at 450 °C. The entry of S and N into the (110) crystal plane of SnO2 reduces its energy band gap width, exhibiting the photocatalytic degradation rate (98.9%) of S?+?N-SnO2-STS sample for the rice straw powder treatment wastewater (RSPTW) irradiated by UV-light for 8 h. The excellent degradation capacity of RSPTW mainly comes from the hydroxyl radicals (·OH) and superoxygen radicals (·O2?) produced by the rich hydroxyl on the surface of S?+?N-SnO2-STS due to the regulatory effect of STS and lower calcined temperature. The sewage discharge of photodegraded RSPTW complies with Chinese National Level II Standards.

  相似文献   

11.
《Ceramics International》2019,45(12):14794-14805
Fluorine doped ZnO thin films were grown by chemical spray pyrolysis technique of zinc acetate and ammonium fluoride, and the effect of fluorine content on structural, optical and electrical properties were evaluated. The structural, morphological, optical properties of ZnO films were investigated by XRD (X-ray diffraction), AFM (Atomic force microscopy), SEM (Scanning electron microscop) and UV–Vis spectroscopy, respectively. According to results, it was observed that all films had polycrystalline texture with hexagonal wurtzite crystal structure and film surface were made up of nano-scale grains, varied by fluorine content. Optical properties showed that optical band gap energy of ZnO changed from 3.28 to 3.24 eV with F content. Shrinkage effect was assessed as the cause in the variation of optical band gap values. Finally, current-voltage (I-V) analysis was performed in Au/ZnO:F/p-Si device in dark and light conditions and certain diode parameters such as ideality factor, barrier height and series resistance were calculated and discussed in detail.  相似文献   

12.
《Ceramics International》2022,48(21):31148-31156
Thin layers of Bi2-chalcogenides, in the form of Bi2(Se1-xTex)3 films, were evaporated on glass substrates by means of the vacuum thermal evaporation. Microstructure of the as prepared layers was investigated by x-ray diffraction (XRD) analysis. Identifications of the surface morphology and roughness were determined via scanning electron microscope (SEM). Optical transmissivity spectra proved that the as prepared films have low transparency with growing trend upon increasing the wavelength beyond the infra-red region. Low transmittance was observed for the as prepared films. Heat treatment, in the form of temperature annealing, was carried out aiming at boosting the structural features and the materials transmissivity. Structural properties and surface features of the annealed films were probed also via XRD and SEM analyses. It was found that the crystal size increases while the micro-strain and the dislocation density decrease obviously due to annealing. It was also observed that the annealing process significantly enhances the materials transmission especially in the range of higher wavelengths. Optical band gap was studied after annealing at various temperatures. Notable change in the band gap value was observed as a result of annealing. The band gap of the undoped (Bi2Se3) materials showed significant rise from 0.14 to 1.79 eV due to annealing. Similarly, the Te-doped samples exhibited notable increase in their band gap values after annealing. For example, the optical band gap of the sample doped at x = 0.20 increased from 0.03 to 0.41 eV by annealing. On the other hand, transmittance was also enhanced by annealing. For samples treated at 250 °C for 3 h, their optical transmissivity is enhanced to over 99% at the visible near-IR range. Such significant enhancement can be ascribed to structural enhancements. With such enhancement in the optical transmissivity, optoelectronic applications including transparent electrode can be met.  相似文献   

13.
Tetragonal SnO2 nanostructures with different sizes, band gaps, and defects were synthesized by varying the amounts of ammonia and polyethylene glycol (PEG) used during production and their structural and optical properties were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD) crystallography, BET surface area analysis, thermogravimetric analysis, Raman spectroscopy, UV–visible absorption spectroscopy, photoluminescence imaging, and X‐ray photoelectron spectroscopy. In addition, the CO oxidation activity was examined by temperature‐programmed reduction and temperature‐programmed CO oxidation measurements. SEM and XRD analysis revealed that the particle size decreased with increasing PEG, but increased with increasing ammonia. Additionally, the band gaps decreased with increasing ammonia, but not with increasing PEG. Tetragonal SnO formed when larger amounts of ammonia were used, and this was converted to SnO2 upon annealing at temperatures up to 700°C. The SnO2 showed a unique strong green emission at 560 nm, which was attributed to a new oxygen deficiency. In addition, a sharp (328 nm) and two broad (390 and 460 nm) photoluminescence peaks corresponding to gap emission and the oxygen vacancies, respectively, were observed. The difference in CO oxidation activity with SnO2 was attributed to varying sizes and defects formed in response to preparation under different reaction conditions.  相似文献   

14.
Maity  N. P.  Maity  Reshmi  Baishya  S. 《SILICON》2018,10(4):1645-1652

In this paper, a theoretical model to estimate the tunneling current density of ultra-thin MOS devices is presented. First an ideal barrier has been assumed for the modeling. Then development in the results is brought in by taking into account the barrier height lowering due to the image force effect (practical barrier). The SiO2 material with selected high-k dielectric material ZrO2 based MOS structure is used to verify the tunneling current density model against the 2-D device simulator, ATLAS of Silvaco TCAD for a wide variation of oxide thickness and biasing conditions having doping concentration of 5 × 1017 cm− 3. Tunnel resistivity is also evaluated utilizing this tunneling current density model. Excellent agreement between the two are observed.

  相似文献   

15.
The effect of Cr3+ on the electrical properties of SnO2‐based films deposited by electrophoresis on Si/Pt substrate was considered. The films were sintered in a microwave oven at 1000°C/40 min and then the surface was modified with deposition of Cr3+ ions by electrophoresis. The diffusion of Cr3+ contributes to the modification of the potential barrier formed on the grain boundary improving the electrical properties due to electron acceptor species adsorption on the grain boundary. The influence on the properties of grain boundary was verified by I versus V characterization in as a function of temperature. The films showed nonlinear coefficient over 9, potential barrier height over 0.5 eV and resistivity greater than 107 Ω·cm. 4 samples were prepared at same conditions and presented similar electrical behavior, showing the efficiency of technique on reproducibility to varistor properties control. Thereby the nonlinear coefficient increases while decreasing the conductivity of the system is noticed.  相似文献   

16.
《Ceramics International》2023,49(19):30972-30988
The synthesis of the nanosized multifunctional thin film provides new solutions for many technological issues and consider a great step for miniaturized technology. Toward these goals, AgSbTe2 semi-nanocrystalline thin films of different thicknesses were synthesized by the thermal evaporation technique. The structural features were investigated by X-ray diffraction, and selected area electron diffraction (SAED) yielding a semi-nanocrystalline thin film of grain size ranging from 9.98 to 21.38 nm. The energy-dispersive X-ray spectroscopy (EDAX) verified the high purity and stoichiometry of the deposited films. For optoelectronic application, many optical parameters, including band gap (Eg), Urbach energy (Eu), Refractive index (n), dispersion energy (Ed), electronic polarizability (αe), and interband transition strength (JCV) were extensively discussed. The optical band gap reduced from 1.41 to 1.04 eV upon increasing the thickness from 150 to 550 nm. The temperature dependence of the electrical resistivity (ρ) of nanosized thin film was measured and the activation energy was estimated and it was found that the resistivity increased up to 450 K asserting the semiconductor behavior of the films. As for diode application, The Ag/2D-MoS2/p-AgSbTe2 (550 nm)/n-Si/Al heterostructure diode was constructed by thermal evaporation and all the diode parameters alongside conduction mechanism were studied in detail. AgSbTe2-based diode showed a low rectification ratio; however, the ideality factor (n) and zero bias barrier height (Φb) had optimal values of about 1.40 and 0.75 at room temperature, respectively.  相似文献   

17.
Epitaxial Ta-doped SnO2 films with Ta concentrations from 0 to 8?at.% have been deposited on MgF2 (110) substrates by the metal-organic chemical vapor deposition (MOCVD) method. The effects of Ta doping on the structural, photoelectrical and photoluminescence (PL) properties of the obtained films were studied in detail. The results showed that the single crystal rutile SnO2 films were obtained and the heteroepitaxial relationship was SnO2 (110) || MgF2 (110) with SnO2 [001] || MgF2 [001]. The highest Hall mobility of 74.2?cm2?V?1?s?1 was achieved for the 5?at.% Ta-doped SnO2 film and the minimum resistivity as low as 2.5?×?10?4?Ω?cm was obtained at 6?at.% of Ta-doping. In the visible region, all the obtained films had average transmittances exceeding 87%. As the Ta concentration increased from 0 to 8?at.%, the optical band gap of the films rose from 3.89 to 4.32?eV. The room temperature PL spectra of Ta-doped SnO2 films showed intense green emission, weak violet and yellow emissions. The corresponding PL mechanisms were discussed.  相似文献   

18.
The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10−6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).  相似文献   

19.
《Ceramics International》2017,43(6):5229-5235
Cu3SbS4 is a promising material for thin film heterojunction solar cells owing to its suitable optical and electrical properties. In this paper, we report the preparation of Cu3SbS4 thin films by annealing the Sb2S3/CuS stacks, produced by chemical bath deposition, in a graphite box held at different temperatures. The influence of annealing temperature on the growth and properties of these films is investigated. These films are systematically analyzed by evaluating their structural, microstructural, optical and electrical properties using suitable characterization techniques. X-ray diffraction analysis showed that these films exhibit tetragonal crystal structure with the lattice parameters a=0.537 nm and b=1.087 nm. Their crystallite size increases with increasing annealing temperature of the stacks. Raman spectroscopy analysis of these films exhibited modes at 132, 247, 273, 317, 344, 358 and 635 cm−1 due to Cu3SbS4 phase. X-ray photoelectron spectroscopy analysis revealed that the films prepared by annealing the stack at 350 °C exhibit a Cu-poor and Sb-rich composition with +1, +5 and −2 oxidation states of Cu, Sb and S, respectively. Morphological studies showed an improvement in the grain size of the films on increasing the annealing temperature. The direct optical band gap of these films was in the range of 0.82–0.85 eV. Hall measurements showed that the films are p-type in nature and their electrical resistivity, hole mobility and hole concentration are in the ranges of 0.14–1.20 Ω-cm, 0.05–2.11 cm2 V−1 s−1 and 9.4×1020–1.4×1019 cm−3, respectively. These structural, morphological, optical and electrical properties suggest that Cu3SbS4 could be used as an absorber layer for bottom cell in multi-junction solar cells.  相似文献   

20.
Highly transparent, p-type conducting SnO2:Zn films were deposited on quartz substrates by radio frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target followed by annealing at various temperatures. The effect of annealing temperature on the structural, electrical and optical performances of SnO2:Zn films has been studied. XRD results show that all the SnO2:Zn films possess tetragonal rutile structure with the preferred orientation of (101). Hall effect results indicate that at 873 K for 3 h was the optimum annealing parameters for p-type SnO2:Zn films with relatively high hole concentration and low resistivity of 3.334 × 1019 cm−3 and 3.588 Ω cm, respectively. The average transmission of the p-type SnO2:Zn films were above 80% in the visible light range. In addition, p-type conductivity was also confirmed by the non-linear characteristics of a p-type SnO2:Zn/n-type SnO2:Sb structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号