首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
蒋丽娟  李来平  张文钲 《工业催化》2014,22(12):905-908
复合多金属硫化物(MMS)催化剂主要用于原油的深度加氢,用于生产高十六烷值、低硫和低芳族化合物柴油。MMS催化剂包含NiMoS、NiWS、NiMoO、NiWO、NiMoWS和ZnMoWS催化剂等。综述MMS催化剂中二元复合金属硫化物催化剂和三元复合金属硫化物催化剂的制备方法,采用二步法即添加有机物作孔成形剂先制得催化剂前驱体,再由前驱体制得的MMS催化剂结构更松散,具有较大的比表面积(90 m2·g-1)和大孔容(大于0.3 cm3·g-1),因而具有更好的催化活性。对比不同MMS催化剂对重质柴油、焦油等的加氢裂解、加氢脱硫和加氢脱氮性能,认为NiMoW三元复合金属硫化物催化剂(50%Ni25%Mo25%W)的活性最优。  相似文献   

2.
在体相Ni-Mo-W加氢催化剂活性前驱体制备过程中加入分散剂或沉淀剂,通过XRD、BET和SEM等对Ni-Mo-W复合氧化物活性前驱体进行表征,考察制备助剂对活性金属有效利用率及催化剂性能的影响。结果表明,以氧化铝为分散剂可有效抑制复合氧化物颗粒的团聚,当氧化铝加入质量分数为1. 5%时,催化剂加氢活性最高,对高硫劣质柴油的脱硫率达99. 9%。以尿素为沉淀剂对活性前驱体制备过程中以离子形态存在的金属向复合氧化物形态发生转化的效果最佳,有效提高了金属有效利用率和催化剂活性,减少原料损失,降低反应尾液处理难度,当尿素加入质量分数为1%时,催化剂活性最高,在350℃、6 MPa、空速1. 5 h~(-1)和氢油体积比600条件下,可将高硫劣质FCC柴油硫含量脱除至10. 2μg·g~(-1),脱硫率达99. 9%。  相似文献   

3.
采用不同方法制备系列复合SiO_2-Al_2O_3载体,以等体积浸渍法负载硝酸镍和钼酸铵溶液制得加氢脱硫催化剂。通过BET、XRD和NH3-TPD对载体进行表征,并以直馏柴油为原料,考察不同载体对催化剂加氢脱硫活性的影响。结果表明,以硅质量分数27%的Si-Al-2载体负载浸渍液制得的催化剂具有较高的加氢脱硫活性,346℃可以将柴油中的硫含量脱除至小于10μg·g-1,加氢脱硫活性较对比剂有很大提高。  相似文献   

4.
TiO_2载体在柴油加氢脱硫中的应用进展   总被引:2,自引:1,他引:1  
从改变催化剂载体性质的角度出发,介绍了TiO2作为柴油加氢脱硫催化剂载体的优越性,综述了TiO2载体的成型及其在柴油加氢脱硫过程中的应用状况。TiO2载体的成型已取得了很大的进展,基本可满足柴油加氢精制过程对载体的要求。提高以TiO2为载体的柴油加氢脱硫催化剂的性能主要有以下几种方法:(1)采用镧、铈等过渡金属对载体进行改性;(2)采用助剂对催化剂进行修饰;(3)采用大比表面积的纳米TiO2或TiO2纳米管作为载体。今后的发展方向仍将致力于TiO2成型载体性能的提高以及高活性Co(Ni)Mo/TiO2催化剂制备新方法的研究上,以适应柴油深度加氢脱硫的要求。  相似文献   

5.
磷对Ni(Co)Mo(W)/Al_2O_3加氢处理催化剂的影响研究进展   总被引:2,自引:0,他引:2  
Ni(Co)Mo(W)/Al2O3催化剂是工业中最常用的加氢处理催化剂.磷作为Ni(Co)Mo(W)/Al2O3加氢处理催化剂中较为常用的添加剂,用于改善催化剂的物理化学性质.本文从磷对Ni(Co)Mo(W)/Al2O3加氢催化剂孔结构、酸性、活性组分分散度等理化性能以及磷对加氢脱硫(HDS)和加氢脱氮(HDN)催化性能两个方面的影响对文献研究结果进行了综述,对磷添加剂的研究结果、存在的分歧以及研究机会进行了分析讨论.  相似文献   

6.
加氢脱硫催化剂载体和活性组分的研究进展   总被引:2,自引:0,他引:2  
总结了近年来加氢脱硫催化剂载体材料与活性组分的研究成果及其进展。指出介孔材料不仅具有高比表面积,而且孔径较大,与其他载体相比,对深度加氢脱硫中难以脱除的芳香大分子硫化物的脱除具有一定的优势。过渡金属元素,如Mo、Co、Ni、Pt和Pd由于电子特性和几何特性,其化合物是加氢脱硫催化剂活性组分的首选,对今后的研究工作做了展望。  相似文献   

7.
杨军 《工业催化》2016,24(2):46-50
以氧化铝为载体,Ni和Mo为金属活性组分,添加不同含量乙二胺四乙酸,采用等体积浸渍法制备系列Ni Mo(x)/Al_2O_3(x为乙二胺四乙酸与Ni物质的量比)重质油加氢处理催化剂,考察乙二胺四乙酸加入量对催化剂加氢脱氮性能的影响,并采用N_2物理吸附-脱附、XRD和HRTEM等对催化剂进行表征。结果表明,乙二胺四乙酸的加入增强了金属组分与氧化铝载体间的相互作用,降低了MoS_2活性相的堆垛层数和片层长度,促进了活性相的分散。乙二胺四乙酸与Ni物质的量比为0.5时,MoS_2活性相堆垛层数和片层长度达到良好的结合,对应的催化剂Ni Mo(0.5)/Al_2O_3具有最优的加氢脱氮性能。  相似文献   

8.
以NiCl_2·6H_2O为前驱体、(NH_4)_6Mo_7O_(24)·4H_2O和FeCl_3·6H_2O为助剂,通过浸渍、焙烧和NaBH_4还原制备高活性的NiMoFeB/γ-Al_2O_3催化剂。采用糠醛液相催化加氢为探针反应对其活性进行了评价。与NiMoB/γ-Al_2O_3相比,NiMoFeB/γ-Al_2O_3催化剂表现出更高的加氢活性和选择性,即使在较低温度60℃和5.0MPa条件下,加氢反应3.0h,糠醛转化率接近100%。考察Fe掺杂量和活性组分的负载顺序对催化剂活性的影响。结果表明,适宜的Fe掺杂量Mo+Ni与Fe原子比为20:1,Mo、Ni和Fe前驱体盐同时负载于γ-Al_2O_3时,催化剂活性最高。XRD研究表明,NiMoFeB/γ-Al_2O_3为无定形结构,活性组分在载体上分散均匀,具有良好的热稳定性。  相似文献   

9.
以大孔、低堆积密度纳米自组装氧化铝为载体,通过共浸剂改性制备负载Mo-Ni双金属活性组分的纳米自组装MoNi-P柴油加氢催化剂。利用BET方法对催化剂的孔结构进行表征。并在固定床微型反应装置上,通过脱硫率的考察,确定最佳反应条件:压力为6.5 MPa,温度为370℃,空速为1.5 h-1,氢油比为700∶1。同时,对5种不同金属配比的Mo-Ni-P催化剂进行40 h的加氢性能评价。实验结果表明,Mo/Ni质量比为5∶1时,加氢效果较好,其平均脱硫、脱氮和芳烃饱和率分别为95.92%、97.84%和73.50%。  相似文献   

10.
介绍LH-03柴油加氢改性催化剂的工业试生产及首次工业应用。LH-03催化剂是以改性的γ-Al2O3为载体、以W、Mo和Ni为活性组分的柴油加氢改性催化剂。试验结果表明,该催化剂具有良好的制备重复性,较高的加氢脱硫、脱氮活性,较好的十六烷值改进性能,并且对原料具有良好的适应性。  相似文献   

11.
以十六烷基三甲基溴化铵作为模板剂,将ZSM-5用不同浓度NaOH处理脱硅,并利用重结晶法成功合成了具有较强酸性的ZSM-5-MCM-41复合分子筛[记为ZMC-M(x),M=1.5、2.0、2.5,x=n(SiO_2)/n(Al_2O_3)]。然后,采用浸渍法制备了Mo S2/ZMC和Ni-MoS_2/ZMC催化剂。考察了不同浓度NaOH脱硅对复合分子筛ZMC结构和性质的影响。同时以噻吩为模型化合物,考察了ZMC的硅铝比、NiMo双金属硫化物对噻吩加氢脱硫的影响。结果表明,随着NaOH浓度的增加,复合分子筛ZMC会生成更多的介孔相,但是过高浓度NaOH处理后会破坏ZSM-5的结构,确定了最佳NaOH处理浓度为2.0 mol/L。随着ZMC硅铝比的增加,催化剂加氢脱硫活性提高,并且复合分子筛负载Ni Mo双金属硫化物的加氢脱硫性能优于复合分子筛负载MoS_2。在H2压力3 MPa、温度280℃、40 mL(1 mg/L)噻吩/十四烷溶液中,0.1 g的20%MoS2/ZMC-2.0(70)和20%Ni-MoS2/ZMC-2.0(70)[m(Mo)∶m(ZMC)=1∶5,n(Ni)∶n(Mo)=1∶1]催化剂对噻吩的转化率分别达到84.1%和95.2%。  相似文献   

12.
采用溶胶-凝胶法结合CO2超临界流体干燥技术制备了不同Ti/Si原子比的TiO2-SiO2复合氧化物(TS-n),考察了Ti/Si原子比、焙烧温度对复合氧化物比表面积、孔结构、酸性及原子结合状态的影响,通过重油催化裂化柴油加氢精制反应考察了以TS-1、TS-4为载体的催化剂脱硫性能的差异.结果表明,TiO2经SiO2复合改性后,热稳定性和晶态稳定性大幅度提高;TiO2-SiO2复合氧化物的酸性及原子间的相互作用与Ti/Si原子比有直接的关系;载体的晶态组成及酸性和催化剂的酸性对催化剂的加氢脱硫性能有显著影响,复合氧化物中锐态型TiO2的存在强化了载体与金属组分之间的相互作用,提高了催化剂的加氢脱硫活性,不同类型的酸性中心对柴油中不同类型的硫化物具有不同的脱除能力,Bronsted 酸中心较多的催化剂对结构简单的硫化物脱除能力强,Lewis酸中心较多的催化剂对结构复杂的硫化物有较好的脱除效果.  相似文献   

13.
以Ni和Mo为活性组分,Al2O3为载体,制备了氧化型Ni-Mo/Al2O3催化剂O-1,在此基础上,以自制的水溶性复合硫化物为硫化剂,制备了器外预硫化型Ni-Mo/Al2O3催化剂S-1,通过BET、XRD和HRTEM等手段对2种催化剂的物化性质做了表征,并对比考察了催化剂对劣质石脑油加氢脱硫脱氮的性能。结果表明:器外预硫化型催化剂对劣质石脑油加氢脱硫脱氮的性能与氧化型催化剂接近,其加氢石脑油产品的硫氮含量均低于0.5 μg/g,这说明采用水溶性复合硫化物为硫化剂可以对氧化型催化剂进行有效地器外预硫化。  相似文献   

14.
为满足FCC原料预处理的要求,开发了一种高脱硫、脱氮活性的FCC原料预加氢处理催化剂。该催化剂以氟改性氧化铝为载体,Ni Mo为活性组分,比表面积为169 m2·g-1,孔容为0.31 m L·g-1,平均孔径为6.5 nm,最可几孔径为3.35 nm和8.00 nm,孔径(4~10)nm占71%,具有大孔容、高比表面积和活性金属组分分散性好等特点。在100 m L固定床加氢试验装置上,以中国石化青岛炼化公司的高硫低氮混合蜡油和江苏新海石化有限公司的高硫高氮焦化蜡油为原料进行加氢活性评价。结果表明,在反应温度370℃、反应压力10.0 MPa、空速1.0 h-1和氢油体积比700∶1条件下,高硫低氮混合蜡油的脱硫、脱氮率分别为98.0%和96.5%,对高硫高氮焦化蜡油的脱硫、脱氮率分别为93.2%和90.0%。催化剂表现出原料适应性强,能有效脱除原料中的硫氮化合物,具有较高的加氢活性。  相似文献   

15.
别东生 《广东化工》1999,26(3):12-17
渣油加氢处理过程用于FCC或焦化装置原料预处理和生产低硫燃料油。该过程使用的老催化剂为Co—Mo/Al_2O_3。新一代催化剂是具有特殊孔结构和颗粒度的Co—Mo和Ni—Mo/Al_2O_3系统。该系统可改善多床层反应器的加氢脱硫、加氢脱氮和加氢裂化功能。其作用是提高抗金属性能,延长循环周期,提高馏分油转化率,提高脱硫、脱氮和脱金  相似文献   

16.
以Ni/W为加氢活性组分,USY/SiO2-Al2O3为载体,采用浸渍法制备了费托合成蜡加氢裂化催化剂,对其进行了表征、活性相研究及活性评价. 结果表明,Ni/W以高分散度形式分散在催化剂载体上,催化剂具有比表面积较大、吸附能力强的中孔结构,在340, 548和870℃上有3个还原峰,分别对应NiO?Ni, W6+?W4+及W4+?W2+或W. 硫化态催化剂表面同时含NiWS, WS2和NiSx等活性相,WS2相片晶堆垛层数决定催化剂的活性. 烯烃具有较高的加氢反应活性,烷烃会裂化异构成小分子的烯烃,其中有的吸附态可能是进一步形成小分子烷烃过程中产生的中间过渡态. 在温度370℃、压力6.4 MPa、氢油体积流量比800、空速2.5 h-1的条件下,石蜡转化率约为50%,柴油的选择性约为90%. Ni/W均匀浸渍在USY/SiO2-Al2O3载体上,可获得相对均衡的加氢-裂解性能匹配,在不降低蜡转化率的同时保证了柴油的高选择性.  相似文献   

17.
采用沉淀法制备了镍/氧化铝催化剂前驱体,前驱体经焙烧、还原、包油成型制得镍/氧化铝油脂加氢催化剂。通过对催化剂进行TPR、氮吸附测定以及棕榈油加氢评价实验,考察了还原条件(还原温度、还原时间和氢气流速等)对催化剂孔结构和加氢活性的影响。结果表明,还原温度对催化剂孔结构和加氢活性影响最明显;催化剂前驱体最适宜的还原条件为还原温度500 ℃、还原时间3.0 h、氢气流速150 mL/min。在此条件下制备的催化剂用于棕榈油加氢反应,能够使每100 g棕榈油碘值由56.0 g降到0.81 g。  相似文献   

18.
刘标铭  丁贺 《当代化工》2021,50(1):225-228
广州石化针对200万t·a-1柴油加氢装置加工原料硫含量高,体积空速大等问题,选用了大连石油化工研究院开发的FHUDS-8/FHUDS-7催化剂体系.加工硫质量分数0.93%~1.04%的高硫直馏柴油,在催化剂体积空速1.73~1.91 h-1和比较缓和的工艺条件下,可连续生产硫质量分数不大于10μg·g-1的国Ⅵ柴油.加工硫质量分数1.26%的直馏柴油和焦化柴油的混合油,在较为缓和的条件下,精制柴油硫质量分数为4.1μg·g-1.通过模拟反应器入口和出口温度的变化曲线,装置在平均负荷94%条件下,装置反应提温速率平均约0.9℃/月.工业应用结果表明,FHUDS-8/FHUDS-7催化剂体系具有良好的加氢脱硫性能、原料适应性以及活性稳定性.  相似文献   

19.
FH-DS柴油深度加氢脱硫催化剂的工业应用   总被引:1,自引:0,他引:1  
陈玉辉 《当代化工》2005,34(5):341-344
为扩大福建炼油化工有限公司柴油加氢装置的处理量,并能生产出含硫质量分数低于300μg.g-1的低硫柴油,以满足公司新标准车用柴油的出厂要求,柴油加氢装置选用了抚顺石油化工研究院研制开发的FH-DS柴油深度加氢脱硫催化剂。工业应用结果表明:FH-DS催化剂具有在较高空速条件下仍保持活性高、选择性好的特点;具有良好的深度加氢脱硫活性和原料适应性。采用FH-DS催化剂达到了装置扩能的目的,装置处理能力由60万t/a提高至80万t/a;同时还生产出了硫质量分数低于300μg.g-1的低硫柴油,满足了公司车用柴油的出厂要求。  相似文献   

20.
提高柴油加氢精制催化剂活性的方法   总被引:1,自引:0,他引:1  
刘志红  王豪  鲍晓军 《化工进展》2008,27(2):173-179
依据过渡金属硫化物催化剂的活性相理论及加氢脱硫、脱芳反应的历程,综述了各种提高柴油加氢精制催化剂性能的方法--使用高加氢能力的活性组分、引入中等强度酸中心、减弱活性组分与载体间的相互作用以及提高活性组分的分散度;介绍了相关的国内外最新研究进展,指出研究开发高比表面积、中等酸性的介孔载体和既能提高活性组分分散度又不增强活性组分与载体间相互作用的新型催化剂制备方法是提高柴油加氢精制催化剂性能的主要途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号