首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
采用Gibbs自由能最小化法对Fe_2O_3氧载体四氢呋喃(C_4H_8O)部分氧化制合成气反应进行热化学平衡计算,考察了反应物摩尔比n(Fe_2O_3):n(C_4H_8O)、温度和压力等因素对Fe_2O_3氧载体C_4H_8O部分氧化制合成气反应产物的影响,结果表明:随反应物摩尔比增大,合成气摩尔分数及氢碳比(H_2/CO)先增大后减小,在反应物摩尔比为1时,合成气摩尔分数及氢碳比最大;随温度升高,合成气摩尔分数及氢碳比明显增大,800—1 200℃时,合成气摩尔分数较高,氢碳摩尔比在1附近,有利于合成气的制备;随压力增加,合成气摩尔分数及氢碳比减小,低压有利于合成气的制备。在反应物摩尔比为1,800—1 200℃、常压条件下,合成气摩尔分数 95%、氢碳比 0. 94。  相似文献   

2.
焦炉煤气非催化部分氧化制合成气实验研究与数值模拟   总被引:1,自引:0,他引:1  
在带有单孔喷嘴石英管反应器实验的基础上,对焦炉煤气非催化部分氧化工艺制合成气进行了研究,分析了O_2/GAS比对合成气各组分含量的影响,反应器中反应过程和温度分布及出口产品组成.实验结果表明CH4转化率随O_2/GAS比增大而增大,O_2/GAS比调节到0.22~0.26时,CH_4转化率达到95%~97%,此时合成气CH_4含量低于1%.利用CFD软件平台对转化反应器进行了数值模拟.模拟结果显示,流量一定时出口气体组分H_2与CH4分别随着进气氧气与焦炉煤气体积流量比值的增加而减少.CO和CO_2分别随着比值的增加而增加.出口气体有效组分摩尔分数随进气流量的变化不是非常明显.在壁面温度为1 100 K时转化效果最好.  相似文献   

3.
介绍了焦炉气制甲醇联产甲烷工艺,并利用Aspen Plus对该联产工艺进行了模拟。模拟结果显示,在给定焦炉气进料条件下,联产工艺可实现日产摩尔分数93.01%的甲烷6.31×105m3,年产摩尔分数99.43%的甲醇2.04×105t。分析了补碳量、新鲜合成气温度、压力及第二级精馏塔塔板数对甲醇产品的影响。结果表明,当补碳量约为625.00 kmol/h、新鲜合成气温度约为240℃、反应压力为6 000.00 kPa、第二级精馏塔理论塔板数为25块左右时,甲醇产品中甲醇摩尔分数达到最大值,为99.75%。  相似文献   

4.
运用吉布斯自由能最小化方法对生物质粗燃气自热重整过程进行了热力学分析,研究了重整反应过程中的温度,O2/CH4摩尔比及焦油摩尔分数等因素对平衡产物组成的影响规律。研究结果表明:低温有利于CO歧化与加氢反应,而高温促进了CH4和CO2的转化,提高合成气H2+CO摩尔分数,降低H2/CO摩尔比。O2/CH4摩尔比的增加有利于生物质燃气从部分氧化反应向完全氧化反应转变,促进了CH4的重整反应而抑制了CO2的转化;O2/CH4摩尔比的增加降低了合成气H2+CO摩尔分数,降低了H2/CO摩尔比,在重整后的生物质粗燃气中,n(H2)/n(CO)≈1。积碳量随温度升高和O2/CH4摩尔比的增加逐渐减少,随着焦油(C10H8)物质的量的增加而增加。焦油物质的量增加提高了合成气中H2与CO摩尔分数,是重整反应的重要原料。优化的生物质燃气自热重整反应条件为温度1 023 K,O2/CH4摩尔比0.7,焦油摩尔分数<1%。  相似文献   

5.
利用流程模拟软件ProⅡ对粉煤加压气化工艺流程进行模拟,通过定性和定量方法分析了不同灰分的煤在气化过程中,对合成气组分、消耗和综合能耗等方面的影响;研究表明,煤中灰分每增加1%,有效气(CO+H_2)摩尔分数降低约0.23%,二氧化碳摩尔分数增加约2.5%,煤耗增加约1.8%,氧耗增加约0.7%,综合能耗增加约1.6%。  相似文献   

6.
《化学工程》2016,(11):48-53
建立了煤基合成气甲烷化反应过程基于吉布斯自由能最小法的热力学计算模型。考察了温度、压力对CO,CO_2单独及同时甲烷化反应的影响,探讨了原料气脱碳处理后,CO_2摩尔分数对CO转化率、CH_4选择性、CH_4产率及积炭的影响。结果表明,低温高压有利于甲烷化反应。在多数情况下CO转化率要高于CO_2,尤其是温度低于600℃时,CO甲烷反应比CO_2更容易发生;随着温度进一步升高,CO_2转化率明显上升,而CO转化率迅速下降。另外,当原料气中CO_2摩尔分数低于2.44%时对积炭无影响,对CH_4的选择性和产率降幅小于10%,在脱碳工艺中可以不予脱除。  相似文献   

7.
某工厂低温甲醇洗工艺原料气分为2股,现有扩产的需求。为实现低温甲醇洗工艺扩产目的,采用Aspen Plus软件基于PSRK物性方法对工艺的实际工况进行了模拟,得到的模拟值与实际值较为符合,从而确定了PSRK为低温甲醇洗工艺模拟的物性方法。在此基础上提出了一种改造方案:新增2台换热器用来预冷原料气;新增氮气汽提塔用来汽提吸收塔甲醇所溶解的酸性气体,甲醇的温度和甲醇中CO2的摩尔分数得以降低,因此甲醇的吸收能力有了明显提高;新增1台进料泵用于输送汽提后的甲醇到吸收塔。同时通过灵敏度分析确定出了改造工艺的最优参数:N2进料量为300 kmol/h,理论板数为7,分流比为0. 020。经过以上改造,各产品流股均符合工艺要求,达到扩产20%的目的。对改造后工艺的操作弹性做进一步分析表明最大扩产幅度可达26%,为实际扩产提供了一定裕度。  相似文献   

8.
王彦鑫  李雪梅  李腾蛟 《化肥设计》2011,49(5):44-45,47
为从鲁奇合成气中得到体积分数为98%以上的CO产品气,采用新型载铜分子筛吸附剂对鲁奇合成气进行了变压吸附分离的试验和研究。介绍了实验流程和实验装置;阐述了实验方法和步骤;简述了吸附温度在70℃时和常温时的实验数据。研究结果表明:对于甲烷体积分数高达15%的鲁奇合成气,该吸附剂能够高效地分离出CO,CO产品气的体积分数可...  相似文献   

9.
马国光  杜双 《化学工程》2019,47(1):74-78
氦气作为一种不可再生能源,因其应用广泛而成为国家重要的战略性物资之一,目前从天然气中提取氦气仍是氦气的主要工业来源。文中将天然气提氦工艺与制LNG工艺进行结合生产,并探索经济地获取LNG及粗氦2种产品的流程参数。利用HYSYS软件对联合流程进行模拟,找到影响流程能耗的关键参数并分析。对关键参数进行分析后发现,对于该流程,适当提高一级提浓塔进料温度、氮气制冷剂低压压力,适当降低一级提浓塔进料压力、氮气制冷剂高压压力、制冷剂流量,对流程的能耗有降低的作用。但通过对LNG液化率和粗氦体积分数的要求,一级塔进料温度应不低于-117℃,不高于-113℃,一级塔进料压力应高于2.2 MPa。最终可以制得的粗氦体积分数为63.6%,LNG液化率达92.9%。  相似文献   

10.
设计了一种利用氮-甲烷膨胀制冷低温精馏含氧煤层气制LNG的工艺,并对其进行了模拟分析。结果表明,该工艺可较彻底除去氮气、氧气等,获得较高浓度的LNG产品。同时分析了回流比、塔板数以及入塔温度对塔底产品含氧量和甲烷含量的影响,并且对该低温精馏工艺中的各设备进行了能耗分析。结果表明,在精馏塔进料温度为-163℃、压力为0.2 MPa时,最佳工艺操作条件为回流比1.5,塔板数24,在此条件下,甲烷回收率可达99.64%,塔底甲烷产品纯度高达99.98%,氧气体积分数仅为0.016%,系统单位能耗0.573 kWh/m3。  相似文献   

11.
为考察熔融盐对粗合成气成份的影响,在固定床内进行了熔融盐粗燃气成份调整实验。在350~500℃温度范围内,考察了温度、流速、挡板开孔直径、气泡停留时间等操作条件对粗燃气成份的影响。研究结果表明,所有实验工况下,熔融盐均能有效的吸收粗燃气中的CO2,得到的合成气中CO2体积分数在2%附近,熔融盐处理技术能有效增加合成气中H2体积分数,降低CO体积分数,改善合成气品质。温度、流速、气泡停留时间对H2和CO的体积分数影响明显。熔融盐粗燃气成份调整适合作为气化、热解制备合成气的后续工艺,提升燃气品质。  相似文献   

12.
《化学工程》2016,(8):42-47
通过分析绝热反应曲线和反应过程CO转化率曲线,设计可行的多级绝热固定床甲烷化工艺流程,得到了一个第一甲烷化反应器循环比为3.0,反应器个数为3的甲烷化反应系统。建立绝热固定床反应器的一维拟均相数学模型,在工业操作条件下,分析了该流程中3个甲烷化反应器内的温度和摩尔分数分布规律。在合成气的进料速度800 kmol/h,进料温度553 K,操作压力为3.0 MPa,氢碳物质的量比约为3.0,循环比为3.0的条件下,模拟结果表明:物料在3个反应器出口的温度分别为879,725,611 K;甲烷干基摩尔分数分别为53.48%,79.24%和95.49%;CO在3个反应器出口的转化率分别为82.18%,99.41%和100%。第3反应器出口CH4干基摩尔分数为95.49%,满足了工业生产要求。  相似文献   

13.
以国内某煤化工企业为实例,应用Aspen Plus工业系统流程软件对HT-L粉煤气化合成甲醇工艺中CO变换反应进行模拟,应用RK-SOAVE和ELECNTL的物性方法计算在特定条件下经过变换反应后CO含量.计算结果显示:在设定温度为210℃,压力为3.6MPa的条件下,CO变换反应前后CO气体的摩尔分数由69.578%降为19.700%,此时符合后续合成甲醇工艺条件的要求;同时与实验结果相比,提出模型能很好地模拟CO变换反应.  相似文献   

14.
熔融盐粗燃气调质实验研究   总被引:1,自引:0,他引:1  
在固定床内进行了熔融盐粗燃气成份调质实验,对熔融盐粗燃气调质实验的运行稳定性、反应过程对熔融盐的物性变化的影响、粗合成气成份对调质实验的影响等问题进行了考察.结果分析表明,350~500℃所有实验工况下,熔融盐均能有效的吸收粗燃气中的CO2,得到的合成气中CO2体积分数在2%附近,熔融盐处理技术能有效增加合成气中H2体积分数,降低CO体积分数,连续运行11h后合成气成份仍相对稳定.实验完成后熔融盐中Na2CO3分布呈现中部高两头低的分布规律,Na2CO3和NaOH比例变化时熔融盐熔点变化较小.这些特性都表明熔融盐粗燃气成份调质适合作为气化、热解制备合成气的后续工艺,提升燃气品质.  相似文献   

15.
在Cu-Zn-Al甲醇催化剂制备工艺的基础上,研制出合成气一步法制二甲醚催化剂。经过实验室试验和评价,确定了催化剂使用的最佳工艺条件:压力40 MPa,温度270~310 ℃,空速1 000~2 000 h-1,合成气中H2体积分数为70%~80%,CO体积分数6%~12%,CO2体积分数3%~4%。在该条件下,CO转化率大于85%,二甲醚选择性大于90%,二甲醚的收率达65%以上。催化剂表现出良好的活性、选择性和稳定性。  相似文献   

16.
<正>一种煤制液化天然气的工艺本发明公开了一种煤制液化天然气(LNG)的工艺,该工艺具体为:煤制合成气甲烷化前仅精脱硫,CO2仍留在合成气中,甲烷化后再进行脱除CO2至50×10-6(vol%)送去液化,生产LNG。本发明采用无循环气的甲烷化工艺,脱CO2采用低温分离与低温甲醇洗相结合的工艺。在压力2.4MPa~2.6MPa,温度-50℃~-60℃。先进行低温分离CO2,塔釜得到液  相似文献   

17.
针对煤制合成气合成甲醇的气源条件及分离指标,采用膜分离技术脱除合成气中的二氧化碳。采用PRO/Ⅱ模拟软件,对膜分离技术用于煤制合成气脱碳过程进行了模拟与优化。以净化气中CO_2摩尔分数小于3%,有效组分CO和H_2的损失率小于6%为目标,考察了CO_2渗透系数、CO_2/H_2选择性、CO_2/CO选择性、膜面积、渗透侧压力及压比、进气二氧化碳浓度对膜分离效果的影响。结果表明:膜材料本身的特性如渗透性、选择性、膜面积对合成气脱碳具有决定作用;一级膜过程难以实现分离目标,需设计多级膜分离过程;压比增大有利于CO_2脱除,但有效组分损失增加,适宜的渗透侧压力为常压100 kPa,压比不小于10;进气CO_2含量升高使净化气CO_2含量增加,有效组分回收率上升。研究结果为膜分离技术用于合成气脱碳提供了理论指导。  相似文献   

18.
辛军 《煤化工》2014,42(6):18-21
简述了国内首套焦炉气甲烷化制LNG的工艺原理、工艺流程,介绍了其重点工艺单元和催化剂:焦炉煤气净化、甲烷合成催化剂、甲烷合成工艺、合成气低温液化等。利用自主研发的预还原催化剂以及绝热型反应器和换热型反应器组合形成的焦炉煤气甲烷合成新工艺,可保证合成气中CO2体积分数小于50×10-6,甲烷合成反应更完全。工业运行结果表明,该装置具有工艺简单、操作平稳、设备投资少、能耗低等特点。  相似文献   

19.
甘海龙 《煤化工》2018,(2):13-16
煤层气制LNG流程中,含氧煤层气在进入冷箱液化之前,必须进行深度脱水。详述了氮气循环脱水再生工艺流程:采用两台干燥塔,干燥塔装填复合床层吸附剂,利用吸附剂的选择吸附特性,脱除煤层气中的水分及剩余CO2,以满足LNG液化单元要求,利用氮气循环干燥脱水的方法实现干燥塔再生。相比传统的干燥塔再生方法,氮气循环再生法能显著降低氮气消耗量,降低整个工艺流程的能耗。在贵州山脚树矿煤层气提纯制LNG项目中,采用氮气循环再生脱水工艺,其氮气的消耗量只有传统工艺氮气消耗量的4.76%,效果良好。  相似文献   

20.
介绍了变换气中CO2脱除的方法,认为气体膜分离技术是未来传统脱碳工艺的潜在替代技术。通过采用PROII模拟软件进行模拟,详细描述了变换气脱碳一级膜过程的质量平衡。研究了气源条件如进气CO2摩尔分数、压力,膜材料性质如渗透性、选择性,以及膜面积等因素对膜分离性能如净化气中CO2摩尔分数和H2回收率的影响。结果表明:膜材料本身的性能如渗透性、选择性、膜面积对脱除CO2具有决定性的影响;操作条件中,压比的增大有助于气体净化,然而造成H2回收率下降和额外的能量消耗,适宜的渗透气压力为101 kPa,压比大于10;进气CO2摩尔分数增大不利于CO2的脱除,却可以提高H2的回收率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号