首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental tests and finite element method (FEM) simulation were implemented to investigate T700/TDE86 composite laminate single-lap joints with different adhesive overlap areas and adherend laminate thickness. Three-dimensional finite element models of the joints having various overlap experimental parameters have been established. The damage initiation and progressive evolution of the laminates were predicted based on Hashin criterion and continuum damage mechanics. The delamination of the laminates and the failure of the adhesive were simulated by cohesive zone model. The simulation results agree well with the experimental results, proving the applicability of FEM. Damage contours and stress distribution analysis of the joints show that the failure modes of single-lap joints are related to various adhesive areas and adherend thickness. The minimum strength of the lap with defective adhesive layer was obtained, but the influence of the adhesive with defect zone on lap strength was not decisive. Moreover, the adhesive with spew-fillets can enhance the lap strength of joint. The shear and normal stress concentrations are severe at the ends of single-lap joints, and are the initiation of the failure. Analysis of the stress distribution of SL-2-0.2-P/D/S joints indicates that the maximum normal and shear stresses of the adhesive layer emerge on the overlap ends along the adhesive length. However, for the SL-2-0.2-D joint, the maximum normal stress emerges at the adjacent middle position of the defect zone along the adhesive width; for the SL-2-0.2-S joint, the maximum normal stress and shear stress emerge on both edges along the adhesive width.  相似文献   

2.
采用钛合金与芳纶纤维复合材料制备不同搭接长度的单搭接接头。利用数字图像相关技术(DIC)、万能试验机等表征方法,对接头拉伸应变与极限载荷进行表征,研究了搭接长度对异质材料单搭接接头胶接性能与破坏模式的变化规律。结果表明,随着搭接长度的增加,单搭接接头极限载荷提升,胶接强度降低,高搭接长度接头出现渐进损伤;偏心弯矩引起的接头偏移减少,搭接部位纵向应变区域面积占比降低;芳纶纤维复合材料层间破坏模式增多,钛合金?胶层界面破坏模式减少,剥离复合材料层数增加。  相似文献   

3.
The emerging trends for joining of aircraft structural parts made up of different materials are essential for structural optimization. Adhesively bonded joints are widely used in the aircraft structural constructions for joining of the similar and dissimilar materials. The bond strength mainly depends on the type of adhesive and its properties. Dual adhesive bonded single lap joint concept is preferred where there is large difference in properties of the two dissimilar adherends and demanding environmental conditions. In this work, Araldite-2015 ductile and AV138 brittle adhesives have been used separately between the dissimilar adherends such as, CFRP and aluminium adherends. In the dual adhesive case, the ductile adhesive Araldite-2015 has been used at the ends of the overlap because of high shear and peel strength, whereas in the middle of the bonded region the brittle adhesive AV138 has been used at different dimensions. The bond strength and corresponding failure patterns have been evaluated. The Digital Image Correlation (DIC) method has been used to monitor the relative displacements between the dissimilar adherends. Finite element analysis (FEA) has been carried-out using ABAQUS software. The variation of peel and shear stresses along the single and dual adhesive bond length have been captured. Comparison of experimental and numerical studies have been carried-out and the results of numerical values are closely matching with the experimental values. From the studies it is found that, the use of dual adhesive helps in increasing the bond strength.  相似文献   

4.
Adhesively bonded composite single lap joints were experimentally investigated to analyze the bondline stress concentrations and characterize the influence of adhesive ductility on the joint strength. Two epoxy paste adhesives—one with high tensile strength and low ductility, and the other with relatively low tensile strength and high ductility—were used to manufacture composite single lap joints. Quasi-static tensile tests were conducted on the single lap joints to failure at room temperature. High magnification two-dimensional digital image correlation was used to analyze strain distributions near the adhesive fillet regions. The failure mechanisms were examined using scanning electron microscopy to understand the effect of adhesive ductility on the joint strength. For a given surface treatment and laminate type, the results show that adhesive ductility significantly increases the joint strength by positively influencing stress distribution and failure mechanism near the overlap edges. Moreover, it is shown that high magnification two-dimensional digital image correlation can successfully be used to study the damage initiation phase in composite bonded joints.  相似文献   

5.
Too often adhesive thickness, adherend thickness and other geometric factors are not explicitly considered in adhesive joint design. This study includes experimental and computational research exploring the means of enhancing the engineering design process for adhesive lap joints to include such effects. It clearly demon-strated that both the cleavage stresses and the shear stresses, near the bond termini, play important roles in lap 'shear' joint failure. Finite Element and Fracture Mechanics analyses were used to examine the energy release rate applied to growth of cracks in adhesive lap joints. Lap joints with similar geometries to those analyzed were designed, fabricated and tested. In a separate set of experiments the bond termini were constrained in the direction normal to the uniaxial loading. If the strength of lap shear joints is dominated by the adhesive shear strength, then constraining the lateral motion of the bond termini should have little or no effect on the overall shear strength of the adhesive joint. This work clearly demonstrates that this is not the case. If cleavage stresses are important in lap joints then constraining the bond termini, in a direction normal to the bond area, should have a commensurate effect on the overall strength of the lap joint. None of the ASTM standardized 'lap shear tests' provide any insight into this premise. This paper also presents analyses and experimental results for lap joints to which several methods of lateral constraint were applied near the bond termini. The analytical and numerical methods described and used for explaining and predicting such effects might be a useful adhesive joint design tool.  相似文献   

6.
In general, the damage in adhesively bonded joints initiates from and propagates through the ends of the overlap area due to high stress concentration in that area. The reduction of these stress concentrations results in an increase in the strength of the joints. For this reason, the rounding of the overlap region before bonding and then applying compression during the bonding process will exert compressive residual stresses on the adhesive layer in the overlap end regions. It is known that the residual stresses formed in this process increase the failure strength of the joint and hence delay the initiation of the damage.

In this study, the effects of overlap length (L = 50,75, and 100 mm), patch thickness (h = 1.6, 3.2, and 5 mm) and patch materials (AA2024 aluminum alloy, AISI 304 steel, AISI 1040 steel) on bond strength were experimentally investigated for adhesively bonded double-strap joint (DSJ) and curvature double-strap joint (CDSJ) subjected totensile loading. The experimental study showed that the overlap length, patch thickness and patch materials have considerable influence on the failure strength and displacement capacity of the joints.  相似文献   

7.
The increased use of adhesives for joining structural parts demands a thorough understanding of their load carrying capacity. The strength of the adhesive joints depends on several factors such as the joint geometry, adhesive type, adherend properties and also on the loading conditions. Particularly polymer based adhesives exhibit sensitivity to loading rate and therefore it is important to understand their behavior under impact like situations. The effect of similar versus dissimilar adherends on the dynamic strength of adhesive lap joints is addressed in this study. The dynamic strength is evaluated using the split-cylinder lap joint geometry in a split Hopkinson pressure bar setup. The commercial adhesive Araldite 2014 is used for preparing the joints. The adherend materials considered included steel and aluminum. The results of the study indicated that the dynamic strength of the lap joint is influenced by the adherend material and also by the adherent combination. Even in the case of joints with similar adherends, the strength was affected by the adherend type. The strength of steel–steel joints was higher than that for aluminum–aluminum joints. In the case of dissimilar adherends, the strength was lower than that of the case of similar adherends. The results of this study indicate that the combination of adherend material should also be accounted for while designing lap joints.  相似文献   

8.
The tensile performance of adhesively bonded CFRP joints has been investigated experimentally. In this study, overlap length, adherend thickness, adherend width and scarf angle were chosen as design parameters. All load–displacement curves are linear, except that the thicker single-lap joints behave slightly nonlinearity due to the bending effect caused by eccentric loading. The lap shear strength is not directly proportional to overlap length, adherend thickness, adherend width and scarf angle for the brittle adhesive studied in the paper. The major failure mode includes adhesive shear failure and adherend delamination failure, sometimes accompanying with some fiber pull-out. Finally, the lap shear strength of three different lap types with similar bonding area (W=25 mm, L=10 mm, θ=5.71°) and adherend thickness (0.96 mm) was analyzed. It is found that the double-lap joint has the highest ultimate failure load. However, when considering the lap region weight, the scarf-lap joint is the most efficient.  相似文献   

9.
The stress distributions in adhesive lap joints of dissimilar hollow shafts subjected to tensile loads have been analyzed by the elastoplastic finite element method, taking the nonlinear behaviors of the adhesive and the hollow shafts into consideration. A prediction method for the joint strength has been proposed based on the Mises equivalent stress distribution in the adhesive and the frictional resistance between the adhesive and the shaft after rupture of the adhesive. In the experiments, three different kinds of adhesive lap joints were made, i.e. the inner and outer hollow shafts were aluminum alloy/aluminum alloy, steel/steel, and steel/aluminum alloy combinations, and the tensile strength of each joint was measured. From the numerical calculations, in the case of the two hollow shafts made of the same material, the tensile strength increases with an increase of Young's modulus of the shaft and in the case of the two hollow shafts made of different materials, the tensile strength increases when the inner hollow shaft of larger Young's modulus is bonded to the outer one of smaller Young's modulus. Also, the effects of the overlap length and the inner diameter of the inner shaft on the tensile strength of the joint are discussed. By comparing the predicted values of the tensile strength with the experimental results, it was shown that the proposed prediction method could estimate the tensile strength of the adhesive lap joints of hollow shafts within an error of about 15%.  相似文献   

10.
The current investigation focuses on the determination of the strength of adhesive-bonded single lap joints under impact with the use of a split Hopkinson pressure bar (Kolsky bar). For this, experiments were conducted at different loading rates, for identical metallic adherends bonded by a two-part epoxy adhesive. Four different types of specimens were adopted, all with a given adhesive thickness. The length of overlap and the width of the adherends were varied resulting in four different areas of overlap. It was found that the average strength, as calculated from the readings obtained from a Kolsky bar, increases with decrease of overlap area. An elastodynamic model for the shear strain of the adhesive-bonded single lap joint was developed to investigate this drastic effect of overlap area on the average strength of the joint. The mathematical model was found to be dependent on both the material properties of the adherend and adhesive, as well as the structural properties of the joint, viz. the width and the thickness of the adhesive layer. A combined experimental-numerical technique was used to predict the strain distribution over the length of the bond in the adhesive. It was found that the edges of the adhesive were subjected to maximum strain, while a large part of the adhesive was found to exhibit zero shear strain. The effect of the lap length and the width was studied individually. The cumulative effect of averaging the strain over the entire overlap area, was decreased shear strain for an increased overlap area. The Kolsky bar was identified to give conservative values of the shear strength of an adhesive bonded lap joint under high rates of loading.  相似文献   

11.
In this work, elasto-plastic stress analysis of single lap joints with and without protrusion in adhesive bondline subjected to tension and bending was carried out using 2D non-linear finite element analysis and confirmed experimentally. AA 2024-T3 aluminum adherends were bonded with SBT 9244 film adhesive. The protrusion was obtained by extending the adhesive film by 2?mm from the overlap length at both overlap ends. Three different adherend thicknesses and overlap lengths for each loading and bondline type were used. The joints with and without protrusion, for comparison, were loaded with the same load for each adherend thickness and overlap length. Finally, it was observed that the protrusion reduces the strength in the joint under tension, while the protrusion increases the strength in the joint under bending.  相似文献   

12.
Single lap joints in many different geometric and material configurations were analysed using finite element analysis and tested in tension. Geometric parameters, such as the overlap length and adherend thickness, together with material parameters such as the adherend and adhesive stress–strain behaviour, were all tested. The mechanisms and modes of failure were observed for different cases, and positions of damage initiation were identified. Failure patterns were related to failure mechanisms. A failure prediction methodology has been proposed and a good correlation was obtained between the experimental and finite element predictions of strength for a variety of joint configurations. The study is presented in two parts. In the first (present paper), high strength steel adherends are considered and in the second paper ductile steel adherends are studied. For high strength steel adherends and a relatively short overlap, failure is dominated by adhesive global yielding. As the overlap gets longer, however, failure is no longer due to global yielding, but due to high local shear strains.  相似文献   

13.
CRH3高速动车组空调通风口胶接结构设计   总被引:1,自引:1,他引:0  
通过理论分析和计算确定了动车组空调通风口部件与铝合金车体胶接用胶粘剂的强度指标。介绍了胶粘剂的选择及胶接结构的设计原则,考查了搭接长度、搭接宽度、胶层厚度和被粘接材料厚度等对胶接件粘接强度的影响。结果表明:车体与空调通风口部件的胶接接头选择受剪切应力作用的搭接接头较适宜,并且搭接接头的承载能力随搭接长度或宽度增加呈先快速上升后趋于稳定态势;当搭接长度为10 mm、胶层厚度为6 mm、铝合金板厚度为5 mm且常温湿固化型单组分PU(聚氨酯)胶粘剂的剪切强度超过0.23 MPa时,搭接接头的承载能力相对最大。  相似文献   

14.
When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because both the elastic modulus and failure strength of the adhesive decrease. The thermo-mechanical properties of a structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the filler containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content, and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bond length and the crack length was developed with respect to the volume fraction of filler.  相似文献   

15.
The strength and lifetime of adhesively bonded joints can be significantly improved by reducing the stress concentration at the ends of overlap and distributing the stresses uniformly over the entire bondline. The ideal way of achieving this is by employing a modulus graded bondline adhesive. This study presents a theoretical framework for the stress analysis of adhesively bonded tubular lap joint based on a variational principle which minimizes the complementary energy of the bonded system. The joint consists of similar or dissimilar adherends and a functionally modulus graded bondline (FMGB) adhesive. The varying modulus of the adhesive along the bondlength is expressed by suitable functions which are smooth and continuous. The axisymmetric elastic analysis reveals that the peel and shear stress peaks in the FMGB are much smaller and the stress distribution is more uniform along its length than those of mono-modulus bondline (MMB) adhesive joints under the same axial tensile load. A parametric evaluation has been conducted by varying the material and geometric properties of the joint in order to study their effect on stress distribution in the bondline. Furthermore, the results suggest that the peel and shear strengths can be optimized by spatially controlling the modulus of the adhesive.  相似文献   

16.
The strength and interfacial behavior of single lap joints with graded adherends subjected to uniaxial tensile loading are investigated in the present paper. A bilinear cohesive zone model coupled with the finite element method is adopted to describe the damage and failure process of the adhesive layer. The peak loading, the rotation angle between the overlap of the joint and the horizontal direction, as well as the failure energy are investigated comprehensively. It is interesting to find that adopting different variation law in the graded adherends may result in varying strength of adhesive joints. By means of choosing proper material and geometry parameters of adhesive joints, the peak loading, the rotation angle and the failure energy of joints can be greatly improved. What is more, the strength of the SLJ is found to depend much more on the property of the soft part near the adhesive layer. The results should be helpful to guide the design of novel structures of adhesive joints in present and potential applications.  相似文献   

17.
The design of adhesively bonded joints is a quite difficult task, due to the stress singularity that arises at the edges of the adhesive adjacent to the loaded substrate. This stress singularity makes any design approach based on elastic stress analysis inconvenient. A more convenient design tool for an adhesive joint should be based on its mode of failure. Most of the adhesive joints fail at the adhesive/adherend interface or very close to it in the adhesive layer. Therefore, a fracture theory such as linear elastic fracture mechanics (LEFM) can be used to analyse the failure of an adhesive joint. In this paper, the design of a single lap joint using a fracture mechanics parameter, i.e. the strain energy release rate (SERR), is discussed. The SERR is extracted from a finite element model using Irwin's virtual crack closure integral. A design equation relating the lap length to the adherend thickness through some design parameters is derived.  相似文献   

18.
The effect of adhesive thickness on tensile and shear strength of a polyimide adhesive has been investigated. Tensile and shear tests were carried out using butt and single lap joints. Commercially available polyimide (Skybond 703) was used as adhesive and aluminum alloy (5052-H34) was used as adherends. The tensile strength of the butt joints decreased with increasing adhesive thickness. In contrast, adhesive thickness did not seem to affect the shear strength of single lap joints. The fabricated joints using the polyimide adhesive failed in an interfacial manner regardless of adhesive thickness. The linear elastic stress analysis using a finite element method (FEM) indicates that the normal stress concentrated at the interface between the adherend and the adhesive. The FEM analysis considering the interfacial stress well explains the effect of adhesive thickness on the joint strength.  相似文献   

19.
The simplicity and efficiency of the adhesive joints have increased more and more their use in many fields. In ship construction the need to join different materials, such as the bonding of the hull/deck, the sea chest, the portholes, the windshields, the panels of cabins, etc. leads to choosing increasingly the adhesive joints. In this work we have evaluated the effects of both SMP (Silyl Modified Polymer) based adhesives and sealants on single lap joints (SLJs) with dissimilar substrates. Three pairs of single lap joints were taken into account among dissimilar adherends: stainless steel (AISI 316) with PMMA (or Altuglas®) and monolithic composite laminates bonded with glass or PMMA. Before tensile testing some SLJ samples were subjected to a three-dimensional computed tomographic analysis to evaluate how the presence of possible defects in the adhesive layer affects the failure mode. A design of experiments was defined in order to quantify the effect of the considered factors and their correlation. The obtained maximum tensile stress values confirm the data provided by the manufacturer, approximately between 2 and 2.5 MPa, showing generally cohesive fracture. Finally the considered SMP adhesives and sealants are well suited for the chosen different substrates, although special attention should be placed on the glass–GFRP joint as it is confirmed by statistical analysis.  相似文献   

20.
Single-lap band adhesive joints of dissimilar adherends subjected to external bending moments are analyzed as a four-body contact problem using a two-dimensional theory of elasticity (plane strain state). In the analysis, the upper and lower adherends and the adhesive which are bonded in two regions are replaced by finite strips. In the numerical calculations, the effects of the ratio of Young's moduli of the adherends, the ratio of the adherend thicknesses, and the ratio of the band length to the half lap length on the stress distributions at the interfaces are examined. A method for estimating the joint strength is proposed using the interface stress and strain obtained by the analysis. An elasto-plastic finite element analysis (EP-FEA) was conducted for predicting the joint strength more exactly. Experiments to measure strains and the joint strength were also carried out. The results show that the strength of a single-lap band adhesive joint is almost the same as that of a single-lap adhesive joint in which the two adherends are completely bonded at the interfaces. Thus, the single-lap band adhesive joints are useful in the design of single-lap joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号