首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
分析了Si3N4结合Si3C材料反应烧结时Fe2O3、SiO2、Al2O3、CaO等杂质相的反应行为。  相似文献   

2.
铬渣含有大量三价铬和六价铬,且pH值达11.5-12.过去排放到城区的(有钙焙烧法)铬渣数以百万吨计。我们用瓶试法研究了影响铬渣中Cr6+、Ca、Al、Si和Mg浸出的因素,铬渣的矿物学性质用X-射线粉末衍射法、SEM(扫描电子显微镜)和化学平衡模型作了研究。pH值范围和两种液固比的瓶试表明:pH值10以上六价铬在水中富集受矿物溶解度支配。计算指出:pH值大于11控制六价铬溶解度的固相是含Cr6+水榴石Ca3Al2(H4O4,CrO4)3和一铬铝酸钙Ca4Al2(OH)12CrO4·6H2O(中间夹有铬酸根离子的层状双氢氧化物粘土)。在pH值9.5-11之间对溶液六价铬浓度的描述由于模型中考虑了三铬铝酸钙Ca6Al2(OH)12(CrO4)3·26H2O而明显得到改善.当水铝钙石溶解时,三铬铝酸钙以二次相沉淀出来.文中提出高pH值时铬渣浸出模型包括含Cr6+的水榴石,一铬铝酸钙,三铬铝酸钙,水镁石Mg(OH)2,方解石CaCO3,Ca2Al2(OH)10·3H2O,CaH2SiO4和水合铝方柱石Ca2Al2(OH)6Si8H8·H2O.此模式准确指出:在pH值10~12和pH值缓冲行为下Cr6+、Ca、Al、Si、Mg在溶液中富集.pH值小于8观察到溶液中六价铬浓度下降,这可能是由于铬酸盐吸附在新沉淀的氢氧化铝和氢氧化铁表面。硫酸盐和碳酸盐的行为与铬酸盐相同.铬渣的行为类似于水泥和高pH值的城市焚化炉底灰。  相似文献   

3.
烧结工艺参数对铝酸钙炉渣体系物化性能的影响   总被引:1,自引:0,他引:1  
在铝酸钙炉渣最佳物料配比条件下,应用XRD和激光粒度分析等手段研究了温度和保温时间对铝酸钙炉渣体系物相组成、粒度和氧化铝浸出性能的影响. 结果表明,当温度低于1450℃时,炉渣处于固相反应区,反应速度缓慢,并含有相当一部分的难浸物质2CaO×Al2O3×SiO2,降低了炉渣的自粉率和浸出性能. 当温度在1450℃以上时,炉渣中出现液相,反应速度加快且进行比较完全;炉渣主要物相为12CaO×7Al2O3和g-2CaO×SiO2,自粉和浸出性能良好. 保温时间对炉渣物相和粒度影响不大,但略微降低了氧化铝浸出率.  相似文献   

4.
对含钒钢渣中的钒在KOH亚熔盐介质中的溶出行为进行了研究,实验考察了反应温度、反应时间及碱渣质量比等因素对溶出过程的影响,并探讨了溶出机理. 结果表明,随反应温度、反应时间及碱渣比增加,钒的溶出率增加. KOH亚熔盐溶出含钒钢渣中钒的过程,是分解其中Ca2SiO4, Ca3SiO5, Ca2Fe2O5等固溶钒的物相,生成可溶性钒酸钾及不溶性的Ca(OH)2的过程. 并可通过控制浸出液中的KOH浓度避免钢渣中高CaO含量对钒沉淀的影响. 反应温度220~240℃、反应时间1 h、碱渣质量比为4时,钒浸出率高于90%. 与传统焙烧法相比,不仅显著降低了能耗,且提高了溶出效率.  相似文献   

5.
为排除Na+对硅酸聚合的影响,用酸解水淬硅酸钙制备了不含金属离子的硅酸溶液及含Ca2+, Al3+的硅酸溶液,研究了加入Ca2+, Al3+对体系聚合行为的影响. 结果表明,加入Ca2+后体系pH值略微降低,加入Al3+后体系pH值显著降低. 初始pH≤2时,Al3+对硅酸聚合起促凝作用,初始pH>2时,Al3+起缓凝作用. Ca2+对硅酸聚合影响不大. 硅酸凝胶后,含Al3+硅酸体系中形成Al?O?Si键,阻碍了凝胶结构水脱附;Ca2+则阻碍凝胶的晶化转变过程,且凝胶中的结构水变少. 不含金属离子、含Ca2+、含Al3+体系的化学式分别为SiO2×0.52H2O, SiO2×0.36H2O, SiO2×1.50H2O.  相似文献   

6.
试验用比色法和原子吸收法等分析手段系统地研究了粉煤灰 H2O、粉煤灰 NaOH H2O、粉煤灰 Ca(OH)2 H2O3个系统在不同水热条件下Al、Si、Ca元素溶出浓度。结果表明:温度、反应时间和OH-的浓度是影响离子溶出的主要因素;计算了不同粉煤灰 Ca(OH)2 H2O系统在100℃、12h条件下SiO2的溶出率,高钙固硫粉煤灰中SiO2的溶出率高于普通粉煤灰,用SiO2的溶出率可以表征粉煤灰的活性;粉煤灰与Ca(OH)2的水热反应,可能是一个原地化学反应。  相似文献   

7.
亚熔盐溶出一水硬铝石型铝土矿过程中赤泥的铝硅行为   总被引:2,自引:0,他引:2  
对NaOH亚熔盐溶出一水硬铝石型铝土矿过程中赤泥的Al, Si行为进行了研究,通过实验研究了溶出过程的反应温度、碱矿比、添加CaO等主要因素对赤泥成分和物相结构的影响. 结果表明,在相同碱矿比下,温度越高越有利于Al2O3的溶出. 在碱矿比为2、反应温度为180℃、反应时间为2 h的条件下,一水硬铝石完全溶出,赤泥中硅主要以Na8Al6Si6O24(OH)2(H2O)2和Na9Al9Si15O48(H2O)27的钠铝硅酸盐形式存在. 亚熔盐溶出过程中添加CaO并不能抑制Si进入溶出液中,甚至会降低Al2O3的溶出率. 但添加CaO可以减少碱的损耗,适于处理中等品位的铝土矿.  相似文献   

8.
以氧化后的钛精矿电炉冶炼渣为研究对象,采用一段氟化氢铵浸出-二段盐酸浸出的新工艺制备可用于沸腾氯化生产的富钛料原料,从浸出反应热力学和改性钛渣浸出行为两方面进行了系统的研究。氟化氢铵浸出热力学研究表明,氟化氢铵浸出可分解硅酸盐和部分黑钛石,并形成CaMg2Al2F12, CaF2和AlF3沉淀,浸出后杂质元素硅主要以(NH4)2SiF6的形式进入到浸出液中。氟化氢铵浸出实验表明,在氟化氢铵浓度为15wt%、液固比为10:1、温度20℃、浸出时间2 h的条件下,Si, Al, Ti, Fe, Ca和Mg元素的浸出率分别为93.55wt%, 28.03wt%, 3.88wt%, 20.50wt%, 3.40wt%和2.45wt%。浸出渣中主要的物相为金红石、黑钛石和钙镁氟化盐。氟化浸出残渣的盐酸浸出热力学表明,CaMg2Al2F12, CaF2, AlF3沉淀和剩余的黑钛石可溶解于盐酸溶液中。盐酸浸出实验表明,在盐酸浓度为20wt%、液固比为8:1、温度120℃、浸出时间2 h的条件下,Ca, Al, Mg, Ti, Si和Fe的浸出率分别为86.78wt%, 62.33wt%, 92.31wt%, 18.08wt%, 40.23wt%和75.36wt%。盐酸浸出后浸出渣主要物相为金红石,TiO2品位95.20wt%、CaO含量为0.49wt%、MgO含量为0.48wt%,满足沸腾氯化法对原料成分的要求。  相似文献   

9.
以宁煤煤灰为研究对象,研究了高岭土、Ca2SiO3、Fe2O3、CaO、Al2O3、SiO2等添加剂在弱还原气氛中对煤灰熔融性的影响.实验结果表明:SiO2,Al2O3,Fe2O3,CaO对煤灰熔融温度的影响基本都是随氧化物含量增加先降低后升高;酸性矿物高岭土可以显著提高煤灰的熔融温度;碱性矿物Ca2SiO3可以降低煤灰的熔融温度.在一定的含量范围内,高岭土、Al2O3、SiO2均可提高煤灰熔融温度,但高岭土效果较好;Ca2 SiO3、Fe2O3、CaO均可降低煤灰熔融温度,Ca2SiO3下降效果较为明显.  相似文献   

10.
RH精炼渣高熔点相作用浓度对粘渣的影响   总被引:2,自引:0,他引:2  
为抑制RH精炼过程中熔渣中高熔点镁铝尖晶石和铁铝尖晶石相的析出以减轻浸渍管粘渣,基于分子离子共存理论,建立了CaO-SiO2-MgO-Al2O3-FeO-CaF2-MnO七元精炼渣系结构单元作用浓度的计算模型,计算了高熔点相的作用浓度,分析了熔渣组成对高熔点相作用浓度的影响. 结果表明,当RH精炼渣的碱度(CaO/SiO2, w)在4.0~5.0, CaO/Al2O3(w) 为1.5~2.0, MgO含量约10%(w), FeO含量约17%(w), CaF2含量不高于7.5%(w)时,精炼渣中MgO×Al2O3和FeO×Al2O3的作用浓度处于较低水平,不足以结晶析出,因而可以减轻RH浸渍管的粘渣. 模型计算结果与实验结果一致,为减轻粘渣用改质剂配方的设计提供了理论依据.  相似文献   

11.
本工作在1400℃下,将平均尺寸约450 μm的硅酸二钙颗粒加入到CaO-FeO-SiO2-P2O5体系转炉渣,研究了硅酸二钙的溶解及含磷固溶体相的形成行为。结果表明,硅酸二钙颗粒在FeO-SiO2-P2O5体系转炉渣中溶解时,沿硅酸二钙颗粒周围形成3个区域:未熔硅酸二钙区域(边缘区域渗透高FeO含量的液态渣)、液相和固相(2CaO?SiO2固相和2CaO?SiO2-3CaO?P2O5固溶体)共存区域以及基体渣层;转炉渣中含磷固溶体相的形成方式为析出机制和扩散机制共存,通过析出机制形成的固溶体中的磷含量较高、其他元素含量较低;通过扩散机制形成的固溶体中的磷含量相对较低、其他元素含量相对较高。  相似文献   

12.
Waste resources containing CaO and SiO2 were leached by an acetic acid solution. Most CaO exist as calcium aluminosilicate and calcium silicate in steel slag and wollastonite, respectively. Silicate leaching was enhanced steeply by heating to 50 °C or increasing acid concentrations to 4 wt%. The Si and/or Al in the leachate then precipitated independently, depending on the solubility. This enabled to improve the selectivities of Ca and Si in the leachate and precipitate, respectively. However, CaO and SiO2 are separate constituents of waste cement. The dissolution of Ca thus took place relatively fast while the ‘free’ silica leached little.  相似文献   

13.
在1400℃下,将平均尺寸φ15 mm?10 mm的石灰块投入CaO?SiO2?FeO及CaO?SiO2?FeO?P2O5两组渣系中,研究了静态条件下石灰在两组渣系中的溶解行为。结果表明,两组渣系在反应界面周围形成四个区域,即基体渣层、C2S渗透层、铁酸钙渗透层和石灰层。渗透层为石灰中的Ca2+与液渣中的Fe2+相互渗透所形成的一个多相共存区域,存在致密固相层影响石灰的溶解。渗透层中的铁酸钙层逐渐被C2S层取代,C2S层厚度不断增加最终溶解于液相渣中。5~60 s两组渣系石灰溶解速度相近,60~80 s含磷渣系石灰溶解速度显著加快。当渣中加入P2O5时,磷会固溶于C2S中形成C2S?C3P固溶体层,该层的形成会排挤FeO进入渣中,提高渣的渗透能力,加速石灰溶解。  相似文献   

14.
用不锈钢渣、水泥、粉煤灰、发泡剂与水制备不锈钢渣泡沫混凝土,测试了不锈钢渣及泡沫混凝土的化学成分、微观形貌、矿物组成、结构、游离CaO含量、易磨性、内辐射指数与外辐射指数、活性指数、主要性能指标(抗压强度、干密度和导热系数)和浸出液中重金属浓度,研究了不锈钢渣用于制备泡沫混凝土的可行性与环境风险。结果表明,不锈钢渣的主要矿物组成为Ca2SiO4及含Al和Ti, Cu, Pb, Ta等重金属的矿相,具有一定胶凝活性且易磨,内辐射指数与外辐射指数满足建筑材料放射性元素限量要求。不锈钢渣掺量为25wt%?42wt%时,泡沫混凝土的干密度为597?621 g/cm3,养护28 d后抗压强度为1.83?2.98 MPa、导热系数为0.11?0.12 W/(m?K),满足泡沫混凝土要求。不锈钢渣所含重金属主要以稳定的金属固熔体存在,浸出浓度远低于危险废物限值。  相似文献   

15.
采用浸提法提取煤矸石中和渣酸浸物中的有价元素,考察了溶出温度、溶出时间和溶出液固质量比对酸浸物溶出过程的影响;以单因素实验为基础,进行正交实验,优化溶出工艺条件,用X射线衍射(XRD)和扫描电镜(SEM)表征煤矸石中和渣酸浸物、酸化产物及滤渣的物相和微观形貌。结果表明,酸浸物溶出最优工艺条件为液固质量比3:1、溶出时间40 min、溶出温度80℃,此时有价元素氧化物的溶出率分别为TiO2 82.63%, Fe2O3 96.48%, Al2O3 98.33%, CaO 87.72%, MgO 95.31%。提取后滤渣中只有SiO2和少量TiO2及CaSO4存在,表明煤矸石中和渣酸浸物中的有价元素通过该溶出工艺可充分溶出。  相似文献   

16.
以平炉用精炼包冶炼工艺参数为依据,分析了LF精炼包渣线用镁炭砖蚀损的主要因素;提出改进镁炭砖用结合剂、添加高活性的合金粉、提高镁砂的CaO/SiO2比和加入合成原料等措施,提高镁炭砖的抗氧化性和抗法侵蚀性能,从而满足了平炉用精炼包冶炼工艺用耐火材料的要求。  相似文献   

17.
范剑明 《无机盐工业》2019,51(11):65-68
分级研究了热活化条件下高铝煤矸石在盐酸和氢氧化钠溶液中的铝硅溶出行为。采用X射线衍射仪(XRD)、扫描电镜(SEM)和比表面积测定仪(BET)对煤矸石试样做了表征分析。通过正交实验分析了反应温度、反应时间、初始酸碱浓度和固液比对热活化处理后高铝煤矸石中Al2O3和酸浸渣SiO2溶出率的影响。结果表明:酸浸溶出Al2O3反应过程中,固液质量比和酸浸时间对溶出率的影响最为显著,酸浸过程的最优工艺条件:初始盐酸质量分数为20%、酸浸温度为90 ℃、酸浸时间为2.5 h、固液质量比为1∶6,在此条件下,Al2O3的浸取率达82.95%;强碱溶解酸浸渣溶出SiO2反应过程最优工艺条件:碱溶温度为95 ℃、碱溶时间为2.0 h、NaOH质量分数为20%、固液质量比为1∶10,在此条件下SiO2溶出率为69.74%,碱溶温度和碱液浓度对溶出率的影响最为显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号