首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用正交试验方法分别探讨了阻燃纤维含量、阻燃剂含量、阻燃剂配比、纤维长度对复合材料燃烧性能及力学性能的影响,采用极差分析方法对试验结果进行了分析,找出最佳的配方,然后与其它添加不同种类的阻燃剂的复合材料进行性能比较。结果表明,当纤维长度5mm、阻燃纤维质量为总质量的10%、阻燃剂质量为环氧树脂质量的40%、三聚氰胺焦磷酸盐(MPP)和季戊四醇(PER)配比为3∶1时,复合材料的拉伸强度为20.45MPa,氧指数为33.7,垂直燃烧达到UL94V-O级。燃烧性能和力学性能与环氧树脂相比较,有较为显著的提高,综合性能最好。在纤维长度、阻燃纤维含量、阻燃剂含量都相同的情况下,添加不同种类的阻燃剂,其中添加MPP和季戊四醇的复合材料性能最好。  相似文献   

2.
采用偶联剂KH570对玄武岩纤维(BF)进行表面改性,研究表面改性BF的长度、添加量对增强环氧树脂(EP)复合材料力学性能的影响。结果表明,改性BF表面产生很多凸起,变得非常粗糙。BF表面改性使复合材料的拉伸强度提高10%~20%,冲击强度提高10%~40%。随着改性BF长度及添加量的增加,复合材料的力学性能显著提高。当改性长BF的质量分数为4%时,与纯EP相比,复合材料的拉伸强度和冲击强度分别提高248.3%和451.5%。长BF的增强效果明显好于改性长玻璃纤维(GF),尤其纤维的添加量较大时复合材料拉伸强度的提高更为明显。当长BF的质量分数为4%时,长BF增强复合材料的拉伸强度较长GF增强复合材料提高37.8%,冲击强度提高9.2%。  相似文献   

3.
采用硅烷偶联剂、乙醇和水等分别对桦木纤维(BF)和回收纸浆纤维进行表面处理,并分别将改性纤维作为不饱和聚酯树脂(UPR)的增强材料,制备相应的BF/UPR复合材料。研究了不同改性方法对复合材料界面性能的影响。结果表明:不同纤维种类、不同纤维表面处理方法和不同纤维用量对复合材料的界面性能、力学性能等影响较大;经硅烷偶联剂处理后的BF,可有效改善BF与UPR之间的界面相容性;当w(偶联剂处理BF)=16%时,相应复合材料的拉伸强度和冲击强度比纯UPR体系分别提高了31.0%和28.5%;在制备回收纤维/UPR复合材料之前应先对回收材料进行筛选,并且应优先选择对UPR基体树脂具有明显增强作用的回收纤维。  相似文献   

4.
以9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)为阻燃剂,制备了聚乳酸/竹纤维(PLA/BF)阻燃复合材料,并通过极限氧指数(LOI)测试、热重分析、力学性能测试和扫描电镜(SEM)分析等手段考察了阻燃剂DOPO对复合材料阻燃性能、热降解行为及力学性能的影响。结果表明:DOPO对PLA/BF复合材料具有良好的阻燃效果。其中当DOPO用量达到4%时,复合材料的LOI由DOPO添加前的22.5%增至29.5%,材料的阻燃性能得到明显提升;同时,复合材料的热稳定性也明显提高,其最大热分解温度由331℃升至357℃,DTG曲线面积明显减小。  相似文献   

5.
将聚碳酸酯(PC)、滑石粉(Talc)、聚四氟乙烯(PTFE)及自制的含硅环三磷腈衍生物阻燃剂(HSPCTP)在密炼机上熔融共混,经模压制备HSPCTP阻燃PC/Talc/PTFE复合材料。通过垂直燃烧测试和极限氧指数(LOI)测试分析了复合材料的阻燃性能,采用热重分析、动态热机械分析、拉伸和冲击试验研究了阻燃剂含量对复合材料热稳定性、储能模量及玻璃化转变温度(T_g)和力学性能的影响。结果表明,HSPCTP的加入能够促进PC的热解,使其更早地产生炭层,有效提高复合材料的阻燃性能,当添加3份HSPCTP时,复合材料的LOI值达到28.4%并可以通过UL 94 V–0等级测试,断裂伸长率和冲击强度分别比纯PC提高了174%和135%,而此时的拉伸强度与纯PC相差不大。HSPCTP提高了低于T_g时的复合材料储能模量,但略微降低了复合材料的T_g。  相似文献   

6.
制备了环氧树脂/纳米金刚石纳米复合材料,研究了纳米金刚石对复合材料力学性能和热性能的影响。研究结果表明,随纳米金刚石含量的增加复合材料的力学性能呈现先增加后降低的趋势。当添加0.4%的纳米金刚石时,复合材料的拉伸强度和弯曲强度比纯环氧树脂分别提高了51.9%和52.5%,冲击强度为纯环氧树脂的1.9倍。复合材料的热稳定性能随着纳米金刚石含量的增加而提高,玻璃化转变温度随着纳米金刚石含量的增加而降低。利用SEM对复合材料增韧增强机理进行了探讨。  相似文献   

7.
采用硅烷偶联剂对竹纤维进行表面改姓,通过热压成型工艺制备了竹纤维增强环氧树脂(EP)复合材料。研究了竹纤维(BF)的长度、竹纤维含量和CaCO3含量对竹纤维/环氧(BF/EP)复合材料力学性能的影响。结果表明,竹纤维增强环氧复合材料,拉伸和冲击强度得到明显改善;当竹纤维含量为20%时,BF/EP复合材料的力学性能最佳,拉伸和冲击强度分别达到37.64MPa、8.30MPa。  相似文献   

8.
以聚乳酸(PLA)为基体,新型纤维素纤维Lyocell纤维为增强材料,通过熔融共混及注塑成型制备了PLA/Lyocell纤维可生物降解复合材料,并采用扫描电镜(SEM)、力学性能测试、差示扫描量热法(DSC)和维卡软化温度测试等手段,探讨了Lyocell纤维含量对复合材料结构和性能的影响。结果表明:随着Lyocell纤维含量的增加,PLA/Lyocell纤维复合材料的结晶度、弯曲模量和维卡软化温度均随之提高,而拉伸强度和冲击强度则呈现先上升后下降的趋势。其中当Lyocell纤维含量达到6%时,其在复合材料中的分布较为均匀,所对应复合材料的力学性能相对较好,其拉伸强度、缺口冲击强度和弯曲模量比纯PLA分别提高了15.3%、12.3%和13.0%。  相似文献   

9.
为了探究四种洋麻/芳纶不同混纺比对其混纺织物增强复合材料力学性能的影响,对以环氧树脂为基体,精细化处理的洋麻和对位芳纶不同混纺比机织物为增强体的复合材料进行力学性能测试,并对洋麻纤维扫描电子显微镜(SEM)及傅里叶红外光谱(FTIR)测试分析纤维表面粗糙度及极性变化,从而来分析力学测试结果。结果表明,洋麻/芳纶30/70混纺织物增强复合材料弯曲强度最高,为248.81MPa,弯曲模量为12.91GPa,与纯芳纶织物增强复合材料相比,分别提高4.9%和7.1%;而洋麻/芳纶20/80混纺织物增强复合材料剪切强度最高,为24.58MPa,与纯芳纶织物增强复合材料相比,提高18.6%。SEM及FTIR表明洋麻纤维精细化处理后,纤维表面粗糙度增加,极性降低,提高了增强体与树脂的界面结合力,从而改善了复合材料的弯曲、剪切性能。  相似文献   

10.
经六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)和聚磷酸铵(APP)处理环氧树脂(EP)的基础上加入可膨胀石墨(EG),制备新型膨胀阻燃环氧树脂复合材料(DOPOMPC/APP/EG/EP)。通过极限氧指数(LOI)、水平垂直燃烧(UL-94)、锥形量热(CONE)、扫描电镜(SEM)等方法,研究了协效剂EG加入对复合材料阻燃性能和力学性能的影响。结果表明,适量EG与DOPOMPC/APP体系有良好的协同阻燃作用,并提高了环氧树脂复合材料力学性能。当DOPOMPC/APP/EG总添加量为22%(DOPOMPC/APP/EG的比例为5/5/1),复合材料LOI值高达38.4%;热释放速率峰值(pk-HRR)、比消光面积(av-SEA)、有效燃烧热平均值(av-EHC)和一氧化碳释放率平均值(av-CO)较纯EP(EP0)分别降低了81.8%,35.5%、29.0%和33.3%;其拉伸强度、弯曲强度和冲击强度比EP1(10%DOPOMPC/10%APP/EP)体系分别提高了70.5%、1.5倍和2.6倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号