首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用S–N–P阻燃剂通过熔融共混法制备了阻燃聚碳酸酯(PC)材料,通过极限氧指数(LOI)仪、垂直燃烧仪、万能电子试验机、冲击试验机和热重(TG)分析仪分别研究了阻燃PC的阻燃性能、力学性能和热性能。结果表明,S–N–P阻燃剂能显著提高PC的阻燃性能,当其质量分数为0.1%时,阻燃PC的LOI值达到35.5%,与纯PC相比提高了43.15%,能通过UL 94 V–0等级,同时拉伸强度相比纯PC提高了17.35%,弯曲强度提高了36.7%,断裂伸长率提高了121.6%,缺口冲击强度仅降低了7.63%;TG分析表明S–N–P阻燃剂能加速PC降解,从而加速炭层的形成起到阻燃作用。  相似文献   

2.
采用水解缩合法,通过改变正硅酸乙酯含量(TE/Si)以及烷硅比(R/Si),制备一系列聚硅氧烷阻燃剂,并将该系列阻燃剂以5%的添加量应用到PC中,研究PC/聚硅氧烷复合体系的力学性能和阻燃性能.结果表明:复合材料的拉伸强度在54.8~61.0 MPa之间,弯曲强度在98.0~104.0 MPa之间,与纯PC的拉伸强度59.7 MPa和弯曲强度105.7 MPa相比可知,阻燃剂对材料的力学性能影响不大.复合材料阻燃性能和极限氧指数(LOI)明显提高,在燃烧过程中,复合材料的热释放速率和烟气产生速率都有不同程度的降低.  相似文献   

3.
采用溶液共混法制备了聚甲基丙烯酸甲酯/多壁碳纳米管(PMMA/MWCNT)复合材料,对其拉伸、冲击等力学性能进行了测试,并利用动态热机械分析仪测试了复合材料的动态力学性能。结果显示:随着MWCNT含量的增加,复合材料的拉伸强度和冲击强度呈现先增加后减小的趋势,在质量分数2%时达到最大值,比纯PMMA分别提高了63.6%和104%;当MWCNT质量分数为1%时,复合材料的储能模量出现最大值;温度低于玻璃化转变温度(约60℃)时,损耗模量低于纯PMMA,高于玻璃化转变温度时,损耗模量高于纯PMMA;损耗峰温度值(T_g)明显升高,由纯PMMA的59.2℃升高到67.9℃。  相似文献   

4.
李湘 《塑料》2024,(1):48-51+64
以PP废玩具料(W-PP)为主材,高岭土(Kaol)、聚磷酸铵(APP)和季戊四醇(PER)为阻燃剂,通过熔融挤出制备一系列Kaol/APP/PER/W-PP复合材料,对复合材料的极限氧指数(LOI)、UL 94阻燃等级、力学性能和热变形温度(HDT)进行测试,并用锥形量热仪进行分析,结果表明,APP/PER添加后,复合材料的阻燃性能和HDT明显提高,力学强度逐渐降低;适量的Kaol和APP/PER具有较好的协同阻燃效果,而且,添加Kaol后,复合材料的力学性能和HDT明显提升,当在W-PP中同时加入3%的Kaol和25%的APP/PER时,复合材料的LOI为32.1%,阻燃达到UL 94(1.6 mm)V-0级,与单独添加相比,拉伸强度、弯曲模量、弯曲强度和缺口冲击强度均提高了28%APP/PER的性能分别提高了16.9%、15.0%、27.4%和31.3%。  相似文献   

5.
通过磷系阻燃剂(FR)阻燃聚碳酸酯/丙烯腈-丁二烯-苯乙烯(PC/ABS)共混物,制备阻燃材料,研究磷系阻燃剂对PC/ABS阻燃复合材料的燃烧行为和热稳定性的影响。通过UL94垂直燃烧测试、极限氧指数(LOI)测试、马弗炉测试等表征方法,对PC/ABS阻燃复合材料的燃烧行为进了系统的研究。结果表明,磷系阻燃添加量为15%时,PC/ABS阻燃复合材料能够达到UL94 V-2级,LOI的值为29.3%,高温时的残炭量由11.2%提高到20.8%。其中FR阻燃剂在高温下可以产生磷酸酯类黏稠难燃物质,能够有效地起到凝聚相阻燃作用,提高了PC/ABS共混物材料的阻燃性能,表现出良好的阻燃效果。  相似文献   

6.
膨胀型阻燃剂对聚丙烯-木粉复合材料阻燃及性能的影响   总被引:1,自引:0,他引:1  
董吉  李斌 《化学与粘合》2007,29(4):269-271,283
主要以聚磷酸铵(APP)、季戊四醇(PER)、以及自制的成炭发泡剂(CFA)复配成的膨胀型阻燃剂对聚丙烯-木粉复合材料进行阻燃.并通过一系列的性能实验研究了不同的阻燃剂配方及阻燃剂含量对聚丙烯-木粉复合材料的力学性能、阻燃性能、流变行为以及热降解行为的影响.结果表明,膨胀型阻燃体系可以提高聚丙烯-木粉复合材料的LOI与成炭性,当添加量为25%时,APP与PER复配阻燃的复合材料的LOI可达27.5,800℃时残余炭含量为19.24%.而且该阻燃剂的加入对提高材料的拉伸和弯曲强度有一定作用.  相似文献   

7.
分别将磺酸盐阻燃剂(KSS)、甲基苯基硅树脂(SFR)和聚四氟乙烯(PTFE)进行复配制备无卤阻燃聚碳酸酯(PC)薄壁材料.用极限氧指数(LOI)、热失重(TG)、水平垂直燃烧等测试手段分析研究各阻燃体系对PC及PC薄壁制品的阻燃性,并测试其对力学性能的影响.结果表明:KSS,SFR能提高PC的阻燃性能,SFR尤其能提高PC的加工性能和缺口冲击强度.在KSS和SFR的添加量分别为0.5和0.4份时,KSS和SFR表现出很好的协同阻燃效果,能实现3.2和1.6 mm下PC的UL94V-0级阻燃,0.8 mm的UL94 V-1级.  相似文献   

8.
《塑料》2017,(3)
成功制备了一种核-壳结构的磷酸钛阻燃剂(F-TiP),并通过熔融共混法将其添加到聚碳酸酯(PC)中。采用极限氧指数测试(LOI)、垂直燃烧试验(UL-94)、热重分析(TG)及拉伸测试等方法,分析了该复合材料的阻燃和力学性能。结果表明:核-壳结构磷酸钛阻燃剂的最优含量为6%,此时复合材料体系的LOI为32.7%,同时其达到了UL-94的V-0级别。由于F-TiP阻燃剂的存在,TG分析结果显示炭层成碳量增加,且SEM分析显示炭层结构更为致密,并发现磷酸钛核和功能化壳之间存在协同阻燃作用。在6%范围内,随阻燃剂F-TiP含量的增加,复合材料的拉伸强度上升,断裂伸长率下降。  相似文献   

9.
《塑料科技》2017,(1):51-55
利用双螺杆挤出机制备了聚碳酸酯/丙烯腈-丁二烯-苯乙烯共聚物(PC/ABS)共混合金,并以磷酸三苯酯/热塑性酚醛树脂(TPP/TPPFR)复配体系作为膨胀型阻燃剂(IFR)对其进行阻燃改性。通过拉伸、弯曲、冲击强度测试考察了PC/ABS阻燃合金的力学性能;通过热变形温度(HDT)和熔体流动速率(MFR)测试考察了合金的耐热性能和加工性能;通过极限氧指数(LOI)和垂直燃烧测试考察了合金的阻燃性能。结果表明:当PC与ABS的质量比为4:1,复配阻燃剂TPP/TPPFR的质量比为1:1、添加量为11份时,可得到综合性能优异的PC/ABS阻燃合金。  相似文献   

10.
分别采用自主研制的新型同向非对称双螺杆挤出机以及传统双螺杆挤出机制备了丙烯腈–丁二烯–苯乙烯塑料(ABS)/膨胀型阻燃剂(IFR),ABS/热塑性聚氨酯弹性体(PUR-T)/IFR以及ABS/PUR-T/IFR/埃洛石纳米管(HNTs)等3种阻燃复合材料试样,表征了试样的冲击、拉伸和弯曲强度以及极限氧指数(LOI),同时测试了非对称双螺杆挤出机制备的试样的燃烧性能,分析了PUR-T和HNTs对试样性能的影响。结果表明,相比于传统双螺杆挤出机,自制非对称双螺杆挤出机由于具有更优异的混合性能,所制备的复合材料试样力学性能和LOI均有提高;针对非对称双螺杆制备的试样,加入质量分数为17.5%的PUR-T后,其冲击强度提高,而拉伸和弯曲强度降低,LOI由27%提升至40%,热释放速率峰值(PHRR)、平均热释放速率(MHRR)、总热释放量(THR)和生烟速率(SPR)降低,火灾性能指数(FPI)提高,阻燃效果显著增加;进一步加入2%的HNTs后,试样的冲击、拉伸和弯曲强度得到提高,LOI稍有下降,但仍为37%,MHRR和THR有所增大,但PHRR和SPR进一步降低,且FPI提高,有助于降低火灾危险性。  相似文献   

11.
以六苯氧基环三磷腈、苯氧基环磷腈、双酚A-双(二苯基磷酸酯)(BDP)为阻燃剂,通过熔融共混对聚碳酸酯(PC)进行阻燃改性,得到了3种阻燃PC,采用熔体流动速率仪(MFR)、热重分析仪(TG)、氧指数测定仪和拉力试验机等研究了3种阻燃PC的阻燃性能、热稳定性、流变性能和力学性能。结果表明:当阻燃剂用量为6质量份时,六苯氧基环三磷腈阻燃PC的UL-94阻燃等级达到V-0级,极限氧指数(LOI)达到32.9%,阻燃效果最好。3种阻燃剂的加入均会提升PC的MFR,其中,BDP对PC的MFR提升效果最明显。3种阻燃剂的加入使PC的拉伸强度、断裂伸长率和冲击强度均显著降低,其中,六苯氧基环三磷腈对PC拉伸强度和断裂伸长率的影响最大。  相似文献   

12.
利用低含氢硅油对纳米二氧化硅(NS)进行表面处理,制备了一种新型含硅阻燃剂(STNS),并将其用于聚碳酸酯(PC)的阻燃。采用傅里叶变换红外光谱(FTIR)、极限氧指数(LOI)、垂直燃烧(UL 94)、力学性能测试以及扫描电镜(SEM)、热重分析(TG)等手段研究了阻燃剂STNS的结构及其对PC阻燃性能和热稳定性的影响,同时分析了STNS对PC的作用机理,并考察了STNS在PC中的分散性及其对PC力学性能的影响。结果表明:阻燃剂STNS在高温下能促进PC交联,从而有效提高PC的阻燃性能和热稳定性。另外,适量STNS的添加能够有效改善阻燃PC的韧性,其中当STNS用量为7%时,阻燃PC的冲击强度和断裂伸长率分别提高了89.9%和108.7%,但其弯曲强度和拉伸强度则分别下降了2.7%和0.7%。  相似文献   

13.
通过Zr-801与α-甲基丙烯酸反应制得锆簇状化合物,将锆簇状化合物与红磷作为阻燃剂加入到聚丙烯(PP)中,制备了锆簇状化合物/红磷阻燃协效聚丙烯复合材料。通过对复合材料进行极限氧指数(LOI)测试、热重测试(TG)、拉伸强度测试及傅立叶变换红外光谱(FTIR)测试研究了复合材料的阻燃性能及其阻燃机理。结果表明:加入锆簇状化合物的复合材料LOI显著增加,材料的耐热性也有明显改善,且力学性能也有较大的增强;锆簇状化合物能促进固相成炭,改善材料的阻燃性能;锆簇状化合物质量分数为4.5%的锆簇状化合物/红磷阻燃体系的氧指数LOI最大可达25.5%。  相似文献   

14.
通过熔融共混和模压成型技术制备了聚对苯二甲酸丁二酯(PBT)/膨胀型阻燃剂(IFR)共混和层状复合材料,其中层状复合材料为3层阻燃结构,内层为非阻燃层(纯PBT),内层外面两层为阻燃层(PBT/IFR)。通过UL94垂直燃烧、极限氧指数(LOI)以及拉伸和冲击性能测试对比分析了两种复合材料的阻燃性能和力学性能。结果表明,与PBT/IFR共混复合材料相比,PBT/IFR层状复合材料的阻燃性能提高幅度更大,虽然低IFR含量下其力学性能低于共混复合材料,但随着IFR含量增加,力学性能下降幅度更小。当层状复合材料中的阻燃层/非阻燃层/阻燃层的厚度比为1.5 mm/1 mm/1.5 mm,即IFR质量分数为22.5%时,其拉伸强度、断裂伸长率和冲击强度与相同IFR用量下的共混复合材料相当,而阻燃性能与IFR质量分数为30%的共混复合材料相当,其UL 94阻燃等级达到V–0级,LOI提高到24.4%。这表明,采用层状阻燃可控受限结构,可在较低的IFR用量下更好地提高PBT/IFR复合材料的阻燃性能,同时减缓了力学性能下降的幅度。  相似文献   

15.
采用熔融共混法制备了膨胀型阻燃剂(IFR)和玻纤(GF)增强改性的聚甲醛复合材料,利用垂直燃烧测试、极限氧指数测试、简支梁摆锤冲击试验机及万能力学测试仪考察了阻燃聚甲醛体系的阻燃性能及力学性能,并采用旋转流变仪测定了复合材料的流变性能。结果表明,质量分数为20%GF的加入使聚甲醛(POM)/IFR复合体系的拉伸强度提升15.8%,弯曲强度提升16.0%,冲击性能提升1倍。与未添加GF的复合体系相比,POM/IFR/GF复合材料表现出更高的动态模量和复数黏度。由于GF"烛芯效应"的作用,GF的加入未实现UL94阻燃等级。通过酚醛树脂对GF进行表面改性(m GF)后,POM/IFR/GF复合体系的极限氧指数(LOI)由22.7%提升至34.6%,力学性能略有提升,体系的模量、复数黏度均低于未改性GF增强体系。  相似文献   

16.
用经偶联剂改性的滑石粉(Talc)与聚丙烯(PP)共混制备PP/Talc复合材料,测试了复合材料的拉伸强度、弯曲强度和冲击强度等,并探讨了Talc含量对复合材料力学性能的影响机理。结果表明:Talc含量对复合材料力学性能有明显影响,复合材料的拉伸强度、弯曲强度和冲击强度均随Talc含量的增加而增大,但均会出现拐点,即当Talc含量分别超过18%,20%,8%时,复合材料的拉伸强度、弯曲强度和冲击强度却随Talc含量的增加而逐步降低。  相似文献   

17.
采用双螺杆熔融挤出加工工艺,以聚碳酸酯(PC)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)为基础树脂,研究了阻燃剂、相容剂及抗氧剂等对PC/ABS阻燃合金材料综合性能的影响.结果表明,PC/ABS阻燃合金材料的简支梁缺口冲击强度随着阻燃剂用量的增加而下降,拉伸强度、弯曲强度、弯曲模量随着阻燃剂含量的增加而增加.当阻燃剂、相容剂质量分数分别为18%,2.0%~3.0%时,该材料使用性能最佳.  相似文献   

18.
《塑料科技》2015,(8):38-42
以芳磺酸盐(KTS)与双酚A双(二苯基磷酸酯)(BDP)作为复配体系,制备了阻燃聚碳酸酯(PC)复合材料。通过极限氧指数(LOI)、垂直燃烧、热失重分析(TGA)、力学性能测试实验研究了复配阻燃剂对PC阻燃性能、热稳定性和力学性能的影响。结果表明:当KTS、BDP用量分别为0.1%和12.5%时,体系的LOI达到最大值37.5%,垂直燃烧等级为UL 94V-0级;KTS与BDP复配使用后,对PC有良好的协同阻燃作用,有利于提高材料的热稳定性,同时提高了阻燃PC复合材料的成炭能力,改善了残炭质量。  相似文献   

19.
用经偶联剂改性的滑石粉(Talc)与聚丙烯(PP)共混制备PP/Talc复合材料,测试了复合材料的拉伸强度、弯曲强度和冲击强度等,并探讨了Talc含量对复合材料力学性能的影响机理。结果表明:Talc含量对复合材料力学性能有明显影响,复合材料的拉伸强度、弯曲强度和冲击强度均随Talc含量的增加而增大,但均会出现拐点,即当Talc含量分别超过18%,20%,8%时,复合材料的拉伸强度、弯曲强度和冲击强度却随Talc含量的增加而逐步降低。  相似文献   

20.
从磷-氮系阻燃剂、阻燃剂类型、协效阻燃剂三个方面制备和研究了高冲击强度、高阻燃性能的玻纤增强阻燃尼龙6(PA6)复合材料。结果表明:三种方法都可以达到阻燃V-0;在溴-锑阻燃基础上,添加磷-氮系阻燃剂,可以提高玻纤增强阻燃PA6的阻燃性,但是会降低力学性能;红磷阻燃制备的复合材料的冲击性能最好;溴-锑阻燃制备的复合材料的拉伸强度和弯曲强度最高,冲击性能最低;有机次膦酸盐制备的复合材料的拉伸强度和弯曲强度最低,冲击性能适中;协效阻燃剂可以降低溴-锑的含量,降低材料成本,阻燃性能保持不变,拉伸强度和弯曲强度略有下降,冲击性能略有上升。得出如下结论:红磷阻燃剂质量分数是6%,以及F2400∶三氧化二锑∶协效阻燃剂质量分数比=17∶5∶2时,玻纤增强阻燃尼龙6复合材料的冲击性能最好,阻燃性达到UL94(1.6 mm)V-0。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号