首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
为得到阻燃性能优良、物理机械性能优异的单组分聚氨酯泡沫填缝剂,系统地研究了混合聚醚、阻燃剂对单组分聚氨酯填缝剂阻燃性能、物理机械性能的影响。优选出了最佳组合,在混合聚醚占配方30%,阻燃聚醚多元醇R2310占配方15%~18%,聚醚多元醇DDL-1000D占配方9%~15%时,TCPP添加量5~15%,氰尿酸三聚氰胺添加量5%~10%的范围内,可制得阻燃性能优良、物理机械性能优异的单组分聚氨酯泡沫填缝剂。  相似文献   

2.
采用结构型阻燃聚醚多元醇、聚酯多元醇、阻燃硅油、催化剂、发泡剂和阻燃剂等原料,通过一步法喷涂制备阻燃型喷涂硬质聚氨酯泡沫(RPUF)。研究了结构型阻燃聚醚多元醇和阻燃硅油对RPUF性能的影响,并在建筑工程中进行了实际应用。结果表明,以100份多元醇为基准,其它组分不变,结构型阻燃聚醚多元醇的添加量为30份、阻燃硅油的添加量为5份时,制备出的RPUF的物理性能、阻燃性能和储存性能最佳。另外,在建筑工程应用中,该产品性能及施工性能均良好。  相似文献   

3.
用生物基阻燃聚酯多元醇替代石油基聚醚多元醇添加于聚氨酯硬泡组合聚醚中,研究了该生物基阻燃聚酯多元醇的替代量,以及在煤矿中阻燃效果。结果表明,生物基聚酯多元醇可替代部分石油基聚醚多元醇使用,当生物基聚酯多元醇在总聚醚多元醇体系中占40%~50%时,聚氨酯泡沫的压缩强度高、尺寸稳定性良好、导热系数低且阻燃效果理想,达到中华人民共和国煤炭行业MT-113—1995标准,保证了煤矿安全使用。  相似文献   

4.
以二乙醇胺(DA)、甲醛和亚磷酸二乙酯(DP)为原料合成了一种新型阻燃二元醇(BHAPE),其与聚醚多元醇(4110)复配制备了阻燃型组合聚醚多元醇,用于制备阻燃型聚氨酯泡沫(FRPUF)。采用极限氧指数(LOI)、热重分析仪(TGA)、锥形量热仪(CCT)和万能试验机等对阻燃聚氨酯泡沫材的料性能进行了研究。结果表明,加入BHAPE可提高聚氨酯泡沫的阻燃性和热稳定性。BHAPE的质量为组合多元醇质量的40%时,聚氨酯泡沫材料的极限氧指数达23.1%,压缩强度为0.225 MPa。  相似文献   

5.
《塑料》2018,(6)
将精制后的碱木质素代替部分聚醚多元醇,通过一步发泡法与聚合MDI混合制备了碱木质素聚氨酯泡沫,同时采用季戊四醇(PER)和聚磷酸铵(APP)复配组成膨胀阻燃剂(IFR)制备了碱木质素阻燃聚氨酯泡沫,通过极限氧指数(LOI)测试分析了碱木质素阻燃聚氨酯泡沫的阻燃性能。通过热重分析(TGA)、锥形量热测试(CONE)和扫描电子显微镜(SEM)测试,分别研究了所制试样的热降解行为和成炭性能、燃烧行为和残炭的形貌。分析结果表明:当碱木质素的添加量为聚醚多元醇的5%,APP与PER的质量比为3∶1,IFR的添加量为30%时,碱木质素基聚氨酯泡沫的LOI达到了24.8%,IFR的加入促进了碱木质素聚氨酯泡沫的降解和成炭,从而提高了材料的阻燃性能。  相似文献   

6.
用含磷氮元素的结构型阻燃聚醚多元醇制备硬质聚氨酯泡沫,考察了结构型阻燃聚醚的用量对泡沫物理性能和阻燃性能的影响。结果表明结构型阻燃聚醚加入使泡沫的压缩强度、尺寸稳定性和氧指数均有明显的提高;当结构型阻燃聚醚的质量占聚醚用量的30%,添加适量的混合阻燃剂时,其氧指数达32%以上;此外,在同一阻燃要求下结构型阻燃泡沫制品的阻燃剂添加量明显减少,但泡沫的各项性能得到显著提高。  相似文献   

7.
采用聚醚多元醇、多亚甲基多苯基多异氰酸酯(PAPI)、泡沫稳定剂、催化剂、高效阻燃剂、发泡剂、含溴环氧树脂等原料通过一步法制备了聚氨酯硬质泡沫材料,研究了不同含溴环氧树脂添加比例的聚氨酯硬质泡沫材料的压缩强度和阻燃指数。结果表明,随着含溴环氧树脂添加量的增加,压缩强度出现先增加后减少的趋势。在含溴环氧树脂添加量占白料总质量10%时,压缩性能最佳;随着含溴环氧树脂添加量的增加,聚氨酯硬泡的极限氧指数呈上升趋势;高效阻燃剂用量可以使改性聚氨酯硬泡极限氧指数得到显著增加,达到30%以上。  相似文献   

8.
牛力  李旭  王佳楠  刘志明 《塑料》2020,49(1):19-22
对精制后的碱木质素进行羟甲基化改性,再利用改性后的羟甲基化碱木质素部分替代聚醚多元醇,采用一步发泡法与聚合MDI制备了羟甲基化木质素基聚氨酯泡沫材料。将次磷酸铝(AHP)作为阻燃剂添加到泡沫中制备了阻燃碱木质素聚氨酯泡沫,通过极限氧指数(LOI)测试分析了羟甲基化木质素基阻燃聚氨酯泡沫的阻燃性能。利用热重分析(TG)和扫描电子显微镜(SEM)分别研究制得泡沫的热降解行为、成炭性能和残炭形貌。实验结果表明,当羟甲基化碱木质素替代聚醚多元醇的量为60%,次磷酸铝的添加量为30%时,碱木质素聚氨酯泡沫材料的极限氧指数(LOI)值达到了27.5%。因此,羟甲基化碱木质素和次磷酸铝使泡沫在燃烧时能更好的形成炭层,从而有效地隔绝空气,降低热传递,提高了材料的阻燃性能。  相似文献   

9.
以多元醇、二异氰酸酯、聚磷酸铵(APP)、三聚氰胺(MA)等为原料,采用一步法,制得阻燃聚氨酯泡沫塑料。研究了不同阻燃剂的用量对聚氨酯泡沫的力学性能、热性能和阻燃性能的影响。结果表明,材料拉伸强度随阻燃剂添加量的增加而增加;材料的极限氧指数和在500℃时的分解残留量均随复合阻燃剂添加量的增加先增大后减小;APP/MA复合阻燃剂的效果好于单组分APP。  相似文献   

10.
以三聚氰胺、尿素、甲醛溶液、高活性聚醚多元醇为原料合成了氨基树脂改性聚醚多元醇。讨论了甲醛、三聚氰胺投料比对改性聚醚多元醇稳定性的影响,确定了减压脱除甲醛的最佳条件,对比了不同甲醛去除剂的除醛效果,并考察了改性聚醚多元醇的阻燃效果。结果表明,当甲醛与三聚氰胺投料摩尔比确定为4.5时,合成的改性聚醚多元醇稳定性最好;改性聚醚多元醇减压脱醛温度控制为100~120℃,时间为8h,可达到最佳脱醛效果;结合减压脱醛处理,再先后用氧化剂、甲醛捕捉剂和光触媒的分别处理可将制成高回弹聚氨酯泡沫的甲醛量降低至16mg/kg;以改性聚醚多元醇制成的高回弹聚氨酯泡沫氧指数达到27%,最大烟密度值为4.11。  相似文献   

11.
用聚醚多元醇A、聚醚二醇B、聚酯多元醇PS-2915、三乙醇胺、水和其他助剂制备了喷涂管道用全水发泡聚氨酯硬泡组合聚醚,并对其反应性能、黏度进行评价,对使用该组合聚醚和多异氰酸酯PM-200制得的聚氨酯泡沫材料的性能进行研究。结果表明,在合适的原料用量时,制得的组合聚醚黏度较低,与多异氰酸酯PM-200的反应速度满足喷涂管道生产工艺要求。当喷涂制得的聚氨酯泡沫单层厚度7 mm左右,泡沫体具有较高的粘接强度、较好的韧性和较低的导热系数,密度61 kg/m^3的泡沫压缩强度达到526 kPa。制得的喷涂管道产品满足GB/T 34611—2017要求。  相似文献   

12.
通过Mannich反应,以三聚氰胺、甲醛、二乙醇胺等为原料,合成了三聚氰胺基阻燃聚醚多元醇。探讨了温度对反应的影响,得出了最佳合成反应温度。同时将该三聚氰胺基阻燃聚醚多元醇在硬质聚氨酯泡沫塑料中进行了应用,制得的硬质聚氨酯泡沫具有良好的阻燃性能,氧指数高达30%以上。利用该三聚氰胺基阻燃聚醚多元醇制得的硬质聚氨酯泡沫强度高、导热系数低和吸水率低,在建筑保温方面具有良好的应用前景。  相似文献   

13.
以聚醚4110为主要原料,研究了阻燃聚酯(或聚醚)多元醇、反应型阻燃剂和添加型阻燃剂对聚氨酯硬质泡沫(RPUF)综合性能的影响。结果表明,阻燃多元醇、反应型阻燃剂的使用对RPUF阻燃性能都有一定的改善作用,添加型阻燃剂的引入则可大幅提高RPUF的阻燃性能,只是固体粉末阻燃剂的添加与阻燃多元醇和反应型阻燃剂相比对泡沫体的压缩强度影响较大。  相似文献   

14.
考察了阻燃聚醚多元醇ZR–001对聚氨酯高回弹泡沫性能的影响。实验表明,随ZR–001添加量增多,泡沫硬度和强度逐渐提高,同时泡沫回弹性下降,压缩永久变形和甲醛含量增大。当ZR–001在A组分中添加质量分数为50%时,高回弹泡沫的75%压缩永久变形超过10%;ZR–001在T/M[TDI(甲苯二异氰酸酯)/MDI(二苯基甲烷二异氰酸酯)]体系泡沫中的阻燃效果优于在MDI体系泡沫中的,在T/M体系泡沫中,当A组分中添加ZR–001质量分数为70%时泡沫的氧指数可达到24.2%。  相似文献   

15.
以多异氰酸酯、组合聚醚为主要原料,以氧化石墨烯为阻燃剂,采用一步法工艺制备氧化石墨烯-聚氨酯泡沫。采用极限氧指数、锥形量热和热重分析三种方法对材料的阻燃性能进行表征。研究结果表明:相比纯聚氨酯泡沫,添加1.0%氧化石墨烯的整体阻燃效果较佳;泡沫材料的氧指数提升0.9个百分点,热释放速率峰值(pHRR)降低55%,总释热量(THR)降低20%;质量损失速率(MLR)、烟释放(SPR)和CO产生速率(COp)等指标均有明显降低。  相似文献   

16.
在研究国内外现状的基础上,主要开展了探索聚氨酯泡沫制备最佳工艺配比及层状硅酸盐添加剂聚氨酯泡沫制备工艺并分析不同添加量对泡沫性能的影响两方面的实验研究。层状硅酸盐添加剂可改善聚氨酯的阻燃性,且随其添加量的增加聚氨酯的阻燃性能逐渐提高,但其压缩强度先上升后下降。加入层状硅酸盐是聚醚多元醇的2%时,聚氨酯复合材料的阻燃和力学的综合性能是最优的。  相似文献   

17.
以MDI及其改性物、聚醚多元醇、氨基聚醚等为原料 ,研制了一种泡沫防护用喷涂聚脲弹性体SPUA 40 3。讨论了NCO含量 ,多异氰酸酯、聚醚多元醇、扩链剂的类型等对该弹性体力学性能的影响。同时介绍了SPUA 40 3喷涂聚脲材料的性能及其在聚苯乙烯、聚氨酯等泡沫材料防护中的应用。  相似文献   

18.
利用精制后的碱木质素代替部分聚醚多元醇制备碱木质素基聚氨酯泡沫材料。将次磷酸铝(AHP)作为阻燃剂添加到碱木质素基聚氨酯泡沫(PUF)材料中制备碱木质素基阻燃PUF材料。采用扫描电子显微镜(SEM)等对其充分燃烧后残炭的表面形貌进行了分析。结果表明,当碱木质素替代量为聚醚多元醇5 wt%时,AHP的添加量为30 wt%时,PUF材料表面残炭量显著增加,且在材料的表面形成了连续致密的炭层,炭层表面较为光滑,该致密炭层能够阻止材料的进一步降解和燃烧,从而提高材料的阻燃性。  相似文献   

19.
以MDI及其改性物、聚醚多元醇、氨基聚醚等为原料,研制了一种泡沫防护用喷涂聚脲弹性体SPUA-403。讨论了NCO含量,多异氰酸酯、聚醚多元醇、扩链剂的类型等对该弹性体力学性能的影响。同时介绍了SPUA-403喷涂聚脲材料及其在聚苯乙烯、聚氨酯等泡沫材料防护中的应用。  相似文献   

20.
采用高活性聚醚多元醇作为基础聚醚,将几种含氮化合物分散或接枝到高活性聚醚多元醇结构中,生成含有聚合物微粒分散体的接枝型阻燃聚合物聚醚多元醇.重点对阻燃聚合物聚醚多元醇合成的条件、原料最佳配比以及在聚氨酯泡沫中的阻燃性能进行了研究.结果表明,此种方法合成的阻燃聚合物聚醚多元醇具有颗粒分布均匀、粘度低、物料流动性好等优点,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号