首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
CdSe:Mn量子点的制备及其光致发光特性研究   总被引:1,自引:1,他引:0  
采用低温水热法,以柠檬酸为配位稳定剂制备了Mn2 掺杂的CdSe量子点.用紫外吸收光谱、荧光发射光谱、X射线衍射(XRD)、透射电镜(TEM)等进行了表征.研究了Mn2 掺杂浓度对量子点的结构及其光致发光性能的影响.光致发光光谱表明,当粒子尺寸为3 nm时,在580 nm处出现了属于Mn2 的4T1-6A1跃迁的特征发射峰.当激发波长为480nm时,在630nm处出现了CdSe的表面缺陷发射峰.随着Mn2 的掺杂浓度增大,CdSe:Mn表面陷阱态发射峰位置没有显著红移.TEM分析结果显示,CdSe:Mn量子点为单分散的,尺寸约为5 nm的圆形纳米粒子.当Mn2 离子掺杂浓度不大于5%时,Mn2 取代表面晶格中的Cd2 离子位置形成辐射性表面缺陷,产生表面陷阱态发射.吸收光谱显示,随着量子点变小,吸收带边发生蓝移,显示明显的量子尺寸效应.  相似文献   

2.
单云  王恒辉  游慧 《化工时刊》2007,21(11):20-24
采用低温水热技术,分别以柠檬酸、聚乙二醇(PEG400)和甲硫氨酸为稳定剂,在水相中合成了核壳型CdSe/CdS量子点,研究了稳定剂、CdSe与CdS物质的量比对量子点发光性能和结构的影响。XRD结果表明,当CdSe∶CdS在1∶3~4时,CdS主要在CdSe的外延生长,形成核壳型纳米粒子,当比例达到1∶5时,CdS单独成晶现象严重。CdSe∶CdS=1∶4时,核壳型量子点具有较高的荧光发射效率。TEM研究表明CdS在CdSe外表面生长形成较为完整的壳层,有效钝化CdSe表面,减少表面缺陷,从而显著提高CdSe量子点的发光效率。CdSe核尺寸为2~3nm的核壳型纳米粒子外包裹一层SiO2壳后,荧光发射效率没有显著提高,发射峰位置无明显红移。量子点包壳后能有效提高该量子点的光化学稳定性,提高量子点的生物相容性。  相似文献   

3.
采用水相化学沉淀法合成ZnS∶Mn2+纳米量子点时,反应条件的变化会直接影响量子点的荧光特性。文中通过调节三聚磷酸钠(STPP)的加入量,改变反应介质酸碱度,成功获得了不同荧光颜色的ZnS∶Mn2+纳米量子点。研究结果表明:反应介质酸碱度的变化只改变了ZnS∶Mn2+量子点的发射光谱,而没有改变其激发光谱。分别加入0.17,0.16 g/mL的STPP,pH值控制在7.5,8.0时,合成的量子点发射峰出现在425 nm和475 nm,呈蓝色荧光;当加入0.15 g/mL的STPP,pH值控制在8.5时,量子点发射峰在485 nm,有微弱橙红色荧光;加入0.10,0.02 g/mL的STPP,pH值控制在9.0或9.5时,在580 nm处有单一发射峰,呈现较强的橙红色荧光。其中pH值为9.5时,荧光强度最高,所合成的ZnS∶Mn2+量子点直径为3.5 nm,且均匀分散。荧光光谱分析证明,随着介质pH值的增大,ZnS∶Mn2+量子点的发射峰逐渐红移,而pH值达到10.0时,发射峰又回到470 nm,橙红色荧光消失,呈蓝色。  相似文献   

4.
采用气液两相法合成了在573 nm处发射荧光的水溶性ZnS:Mn2+量子点。研究了Mn2+掺杂量(物质的量分数,下同)对ZnS:Mn2+量子点荧光强度的影响,结果表明:随着Mn2+掺杂量的增加ZnS:Mn2+量子点荧光强度随之增加;当Mn2+掺杂量达到1%时ZnS:Mn2+量子点荧光发射强度达到最大;继续增加Mn2+掺杂量ZnS:Mn2+量子点荧光强度减弱。利用透射电镜(TEM)、X射线粉末衍射(XRD)、红外光谱(IR)、紫外-可见光谱(UV-Vis)和荧光发射光谱对ZnS:Mn2+进行了表征,结果表明ZnS:Mn2+量子点具有较强的黄色荧光。  相似文献   

5.
刘晶莹  王绍宁  张莹 《化学试剂》2012,34(4):309-311
以巯基乙酸为稳定剂合成了CdSe量子点,利用X-射线粉末衍射(XRD)和透射电镜(TEM)对量子点结构进行了表征,粒径约为5 nm。以碳二亚胺为缩合剂将量子点与免疫球蛋白共价连接,光谱实验结果表明CdSe量子点与免疫球蛋白有效结合,其荧光发射峰发生了红移,而半峰宽和发射强度没有明显变化。  相似文献   

6.
本文采用NaBH_4为还原剂,CdCl_2为镉源,SeO_2为硒源,通过一步水相法合成了巯基乙酸(TGA)稳定的CdSe:Mn量子点。研究了前驱体溶液的反应时间、pH值、Mn~(2+)的掺杂量等实验条件对合成CdSe:Mn量子点发光性能的影响,并采用X-射线粉末衍射和荧光发射光谱等对其进行了表征。结果表明,CdSe:Mn量子点具有立方晶型,少量Mn~(2+)离子的掺杂并不影响CdSe量子点的晶体结构。  相似文献   

7.
以SnCl4·5H2O为原料、三重蒸馏水为溶剂,结合溶胶凝胶法与水热法合成了9种不同粒径的SnO2量子点胶体及其对应的粉末颗粒。分析了不同合成条件对量子点的影响,用XRD和TEM对其粉末结构和形貌进行了表征,对SnO2纳米粒子的Uv-Vis光谱以及光致发光光谱进行了分析,计算了量子点粒径大小以及禁带宽度,并对其荧光发光机理进行了探讨。结果表明,合成的Sn02量子点的粒径为3.2~4.6nm,粒径分布均匀,分散性较好。SnO2纳米粒子光致发光在430nm、530nm和600nm处有发光峰,分别是由锡间隙、单电子氧缺陷以及表面态引起的深能级跃迁所致。  相似文献   

8.
本文采用胶体化学方法合成了无稳定剂修饰和巯基丙酸为稳定剂的单分散Zn S∶Mn掺杂纳米晶,研究了稳定剂对纳米晶荧光性能的影响。紫外吸收光谱说明了掺杂纳米晶具有明显的量子限域效应,与体相材料相比,紫外吸收带边蓝移了0.29 e V。荧光发射光谱研究表明,巯基丙酸稳定剂对纳米晶表面的修饰使得主体Zn S纳米晶的表面缺陷发射明显消失。掺杂纳米晶在575 nm处有一强的荧光发射峰,其归属于Mn的4T1-6A1跃迁产生的荧光发射。  相似文献   

9.
采用墨水法,以溴化铯、溴化铅为源,以油酸为配体,在甲苯体系中室温下空气中快速合成Cs PbBr3钙钛矿量子点。该方法操作简单,能耗较低,而且能够通过控制配体的量,实现对钙钛矿量子点尺度的控制,当配体量增大时,量子点的尺寸由~12 nm减小到~5 nm。在反应过程中,配体的螯合阻止了量子点的进一步生长,同时,通过对样品的光致发光特性测量发现,较小的CsPbBr_3钙钛矿量子点的光发射峰在490 nm,大尺寸量子点的发光峰在515 nm,小尺寸量子点的荧光发射发生了蓝移,验证了小尺寸量子点的量子限域效应。因此,该方法不仅可以方便、快捷地应用于金属卤化物钙钛矿量子点的制备,而且能够调控量子点的光发射。  相似文献   

10.
Cu2+离子掺杂纳米SiO2材料中346 nm光致发光带   总被引:2,自引:2,他引:0  
采用溶胶一凝胶技术制备了Cu^2+掺杂纳米SiO2材料,测量了材料的光致发光性能。X射线衍射及透射电子显微镜测试结果表明:Cu^2+掺杂纳米SiO2材料具有微晶结构,颗粒尺寸为20-30nm。对其光致发光谱的测定显示:微量Cu^2+掺杂的样品在220nm激发时存在着唯一的很强主峰,位于346nm左右的紫外发光峰。通过对比不同掺杂浓度、不同煅烧温度及氢化处理对该紫外峰的影响,对346nm紫外发光峰可能的起源进行了初步探讨。  相似文献   

11.
张毅 《化工时刊》2008,22(5):23-25
在氩气条件下和非配位溶剂十八烯(ODE)中,利用单质Se和CdO在油酸(OA)配体中,高温成核,低温增长合成量子点CdSe。利用紫外吸收光谱和荧光对量子点进行表征和分析,初步产物的荧光谱图呈现两个荧光发射峰,分别为短波处较窄的带边发射和长波处较宽的缺陷发射。利用一种修饰剂对量子点表面进行修饰,有效的消除缺陷发射,修饰后的量子点在荧光谱图中表现为仅有一个发射峰位,峰位处于410nm左右。在紫外灯照射下显示紫色。  相似文献   

12.
以水热法在水相中直接合成了巯基乙酸修饰的CdSe量子点,并将合成的CdSe量子点进行表征、纯化。在波长365nm紫外光的激发下,CdSe量子点发射出明亮的黄绿色荧光,荧光发射峰约位于528nm,将得到的CdSe量子点纳米发光材料应用于非渗透性客体上潜指纹的荧光标记成像研究,发现CdSe量子点溶液显现的手印纹线流畅,显现细节特征明显,呈现明亮的黄绿色荧光指纹,具有很高的实用价值和鉴定价值。  相似文献   

13.
SnO_2纳米粒子的溶剂热制备及光致发光性质   总被引:1,自引:0,他引:1  
以SnCl4·5H2O为原料,乙二胺为溶剂,用溶剂热法在180℃合成了SnO2纳米粒子,用XRD和TEM对其结构和形貌进行了表征,对SnO2纳米粒子的红外谱图、漫反射谱图以及光致发光性能进行了分析,探讨了乙二胺辅助合成SnO2纳米粒子的化学原理和生长机制。结果表明,用乙二胺辅助成长法合成的SnO2纳米粒子的粒径在40nm左右,粒径分布均匀,分散性较好。SnO2纳米粒子光致发光在340、432和672nm处有3个强峰,在472和540nm处有2个弱峰,其中340nm处的峰为紫外近带边激子发射峰,432、472和540nm处的峰是由氧缺陷引起的,672nm处的峰归因于表面态的氧缺陷引起的能带中深能级跃迁。  相似文献   

14.
嵇天浩 《精细化工》2011,28(1):14-17,44
采用两步水热合成过程制得了CdSe或/和PbSe负载的TiO2纳米带复合材料。用XRD、SEM、TEM、UV-Vis吸收和FTIR等测试技术对产物进行了一系列表征。结果表明,六方相CdSe粒子或/和立方相PbSe粒子直接负载在四方相锐钛矿型TiO2纳米带表面,其中呈近球形CdSe粒子的粒径主要在100~400 nm,而呈近立方体形PbSe粒子的边长主要在300~1 000 nm。CdSe和PbSe共负载TiO2纳米带复合材料在可见光区域有强的光吸收。由FTIR谱图推断,在复合材料载体TiO2纳米带结构中掺杂有少量Cd2+或/和Pb2+离子。  相似文献   

15.
《化学工程》2017,(3):59-63
通过水相合成法快速且低成本地合成了荧光量子产率高、粒径均匀、光稳定良好的吡啶二羧酸(DPA)螯合型CdSe:Tb~(3+)量子点。并且通过紫外分光光度计、荧光分光光度计和扫描电子显微镜(SEM)对产物进行了表征。本课题研究了[Tb~(3+)]/[DPA]比例、反应温度、反应转速对DPA与Tb~(3+)的螯合后光学性质的影响。结果表明:当[Tb~(3+)]/[DPA]=10∶1、t=60℃、反应转速为400 r/min时,得到了DPA激发Tb~(3+)的最佳条件,将此条件运用到制备DPA螯合型CdSe:Tb~(3+)量子点中,制成的DPA-CdSe:Tb~(3+)量子点的最大吸收峰在400 nm处,它的荧光发射峰在560 nm处,相比较于未经修饰的CdSe量子点,荧光发射峰向右偏移了10 nm,荧光强度得到了增强且量子点比较稳定,合成的吡啶二羧酸(DPA)螯合型CdSe:Tb~(3+)量子点荧光强度较强、稳定性好、量子产率高。  相似文献   

16.
利用Na2SO4作为熔盐,ZnCl2、MnCO3和Na2SiO3.9H2O作为原材料,在900~1050℃间成功地合成了绿光发射的Zn2SiO4∶Mn荧光粉。当监测波长为524nm时,样品激发谱出现峰值位于254nm和270nm的两个较强的宽带激发峰,同时存在几个较弱的宽带激发峰,分别位于358nm、425nm和434nm处。发射光谱表现为峰位位于524nm处的一个宽带发射。样品的最佳烧结温度为1000℃,最佳保温时间为5h,当Mn2+掺杂摩尔浓度为3%时,样品绿光发射性能最好。  相似文献   

17.
采用提拉法生长了Nd:Gd3Ga3O12(Nd:GGG)晶体。切割后的样品经过端面抛光,测试了荧光光谱、吸收光谱和激光性能。荧光光谱表明:晶体的最强的荧光发射峰位于1062nm,是Nd^3+的4^F3/2-4^I11/2谱项导致的荧光发射。由吸收光谱发现:Nd:GGG晶体的最强吸收峰位于808nm,表明该晶体适合于激光二极管泵浦.并且吸收峰强度随掺杂离子浓度的增加而增加。激光性能测试结果表明:激光二极管泵浦时光-光转换效率为33.+8%,斜效率为57.8%。  相似文献   

18.
水相制备硒化镉半导体量子点的荧光性能   总被引:9,自引:3,他引:6  
王璐  王德平  黄文旵  宁佳  郁美娟 《硅酸盐学报》2005,33(10):1224-1230
研究水相制备CdSe半导体量子点的合成工艺及后处理过程(包括前驱体物质选择及其用量、水浴反应时间、真空热处理等因素)对样品荧光性能的影响。通过荧光光谱测试分析样品荧光性能,结合紫外-可见光吸收光谱分析样品光吸收性能,并用扫描电镜和X射线衍射谱分析样品形貌与组分。结果表明:使用Na2SO3前驱体制备的水溶液样品的荧光性能容易受水浴加热时间的影响,表现出特殊的荧光双峰现象。使用NaBH4前驱体制备的水溶液样品荧光性能几乎不受水浴加热时间的影响.NaBH4的加入量增多有利于钝化CdSe量子点表面,有效减少表面陷阱.大幅度提高荧光量子产率。真空热处理使样品荧光峰锐化,半峰宽为30~40nm且峰位产生红移,峰强急剧增加。  相似文献   

19.
以甘蔗渣为基质制备碳量子点,先将甘蔗渣高温碳化得到黑色固体,再利用强氧化剂化学氧化法制备碳量子点。通过F-4500荧光分光光度计、UV-2450紫外可见(UV-vis)吸收光谱仪、Tecnai G2 20型透射电子显微镜(TEM)对所制备出的碳量子点的形貌、吸光特征及荧光特征进行了表征。结果表明:碳量子点颗粒直径在5nm-15nm之间,晶格0.3nm;在300nm处有明显的紫外吸收峰;在300nm处有荧光发射峰,符合规格。  相似文献   

20.
采用高压锅水相合成了巯基丙酸修饰的Cd Te量子点,并采用紫外可将光吸收光谱、荧光光谱和X-射线粉末衍射对量子点的光学性质和结构进行表征,结果表明发射峰位于514 nm,半高宽为54nm,量子荧光产率达到了27。巯基丙酸修饰的Cd Te量子点对Hg2+有很好的选择性,且随着Hg2+浓度的增加量子点发光强度逐渐降低呈良好的线性关系,检测限达2×10-9mol/L,因此Cd Te量子点可用于测定微量的Hg2+离子。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号