首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Surface characterization of the transient products that precede chalcocite formation during chalcopyrite reduction was carried out. The experimental strategy employed in the present work consisted of the application of different potential pulses (fixed energetic conditions) on the surface of chalcopyrite electrodes in 1.7 M H2SO4. The chemical products formed at different potential pulses were characterized by cyclic voltammetry (CV) and XPS. Each electrogenerated species presented a specific voltammetric behavior and an XPS spectrum, in which the values of principal photoelectronic peak bond energies for Cu 2p3/2, Fe 2p3/2 and S 2p3/2 and the atomic concentrations were considered. Several potential intervals could be identified: in 0.115 ≥ Ecat ≥ −0.085 V vs. SHE, an intermediate copper sulfide is formed whose composition is between those of chalcopyrite and bornite, such as talnakhite. The reduction of this product occurs slowly, giving bornite at potentials less than −0.085 V. In the applied potential region −0.085 ≥ Ecat > −0.185 V, the bornite gradually decomposes causing the incomplete conversion to chalcocite. In the potential interval −0.185 > Ecat ≥ −0.285 V, energetic conditions are large enough to allow the immediate decomposition of bornite, forming chalcocite in a more quantitative manner.  相似文献   

2.
The dissolution of a massive chalcopyrite electrode (98.1% chalcopyrite, 1.9% siderite) was studied in 0.5 M sulfuric acid solution. Different anodic potentials were applied and the behavior of the electrode was observed by means of EIS, potentiodynamic, and Mott-Schottky techniques. Electrochemical impedance spectroscopy studies at open circuit potential (around −235 mV vs. MSE) proved the existence of a thin surface layer on the electrode. This layer was stable up to 100 mV vs. MSE and was assumed to be Cu1−xFe1−yS2 (y?x) based on reports from previous studies. By increasing the potential to the range of 100-300 mV vs. MSE, the previously formed layer partially dissolved and a second layer (Cu1−xzS2) formed on the surface. Both of the layers showed the characteristics of passive layers at low potentiodynamic scan rate (0.05 mV s−1) while at high scan rates they acted like pseudo-passive layers. However, in the potential range of 300-420 mV vs. MSE, both of these surface layers dissolved and active dissolution of the electrode started. Further increase in potential caused the formation of a CuS layer which hindered the dissolution rate of the electrode. The formation of CuS is concomitant with Fe2(SO4)3 formation and the latter may act as a nucleation precursor for jarosite at higher potentials (around 750 mV vs. MSE). Jarosite precipitation on the electrode surface hindered the dissolution of chalcopyrite at higher potentials. Different equivalent electrochemical circuits were modeled for each potential range and the model regression results compared with the experimental results of EIS to determine the proposed sequence of chalcopyrite dissolution.  相似文献   

3.
The electrochemical behavior of p-tert-butyl calix[8]arene has been investigated by cyclic voltammetry. The result shows that there is an irreversible electrochemical oxidative wave when the potential ranges from −0.3 to 1.6 V versus Ag/0.1 M AgNO3 in acetonitrile (Ag/Ag+). At 25 °C, the peak potential is ca. 1.43 V (versus Ag/Ag+) at scan rate of 0.05 V s−1. The number of the electrons transferred in the electrochemical reaction is four. The diffusion coefficient of p-tert-butyl calix[8]arene is 2.8 × 10−5 cm2 s−1. The diffusion activation energy is 12.3 kJ mol−1.  相似文献   

4.
T. Jiang 《Electrochimica acta》2007,52(13):4487-4496
The kinetics of the oxygen reduction reaction (orr) on Cu(h k l) surfaces are investigated in perchloric acid and sulfuric acid solutions using rotating ring disk electrode (RRDCu(h k l)E). Parameters, such as reaction order, kinetic current, rate constant, Tafel slopes as well as the number of electrons transferred are determined. The variation in the activity and reaction pathway with the crystal faces in different electrolytes is related to the surface characteristics of Cu(h k l) and the structure-sensitive inhibiting effect of the adsorbed anions on their surfaces. In 0.1 M HClO4, the difference in activity is clearly observed on Cu(h k l) surfaces (Cu(1 0 0) > Cu(1 1 1) although it is relatively small). The higher activity of Cu(1 0 0) arises from its more open characteristics which may facilitate the co-adsorption of O2. On the other hand, the adsorption of oxygenated species on Cu(1 1 1) at E > −0.35 V induces a 2 e pathway; while a 4 e reduction is observed on Cu(1 0 0) in the entire potential region (−0.70 V < E < −0.10 V). In 0.5 M H2SO4, the sequence in activity between Cu(1 1 1) and Cu(1 0 0) varies with the potentials, i.e., Cu(1 0 0) is initially more active than Cu(1 1 1) at −0.35 V < E < −0.15 V, however, the reversal in the activity between Cu(1 1 1) and Cu(1 0 0) is observed at more negative potentials (−0.45 V < E < −0.35 V). The desorption of strongly adsorbed (bi)sulfate anions on Cu(1 1 1) induces the 2 e reduction via peroxide formation, however, a 4 e reduction is dominant on the Cu(1 0 0) surfaces. The major effect of (bi)sulfate anions and oxygenated species on the orr kinetics and reaction pathway on Cu(h k l) surfaces is the blocking of active copper sites for the adsorption of O2 molecules.  相似文献   

5.
The mechanism of the oxygen reduction reaction (ORR) in a naturally aerated stagnant 0.5 M H2SO4 was studied using electrochemical methods. The cathodic polarization curve showed three different regions; electrochemical impedance spectroscopy (EIS) measurement was used accordingly. The EIS data were analyzed, and the mechanism for the ORR was proposed consequently. The three regions include a limiting current density region with the main transfer of 4e controlled by diffusion (−0.50 V < E < −0.40 V), a combined kinetic-diffusion region (−0.40 V < E < −0.20 V) with an additional 2e transfer due to the adsorption of the anions, and a hump phenomenon region (−0.20 V < E < −0.05 V), in which the chemical redox between the anodic intermediate and the cathodic intermediate , together with the electrochemical reaction, synergistically results in the acceleration of the ORR. Therefore, a coupled electrochemical/chemical process (the EC mechanism) in the hump phenomenon region was proposed, and a good agreement was found between the experimental and fitted results. The EC mechanism was confirmed by the deaerated experiments.  相似文献   

6.
The voltammetric dissolution of an iron-zinc alloy film, deposited potentiostatically from −0.2 to −1.4 V, was studied. Dissolution curves of the film at different sweep rates showed only one anodic peak, whose current density (jp) was higher than the divacancy current density, implying that Fe and Zn in the film dissolved simultaneously. Equations relating jp to sweep rate (v) and peak potential (Ep) to v, for the dissolution process of thick alloy film, were developed on the basis of Brainina's theory of pure metal layer dissolution. These equations were applied to the dissolution of Fe-Zn alloy film. The results obtained showed that the jp × v and Ep × v plots were linear, corroborating the equations developed based on Brainina's theory and indicating that this alloy dissolves as one metal.  相似文献   

7.
T. Romann  E. Lust 《Electrochimica acta》2010,55(20):5746-9194
The properties of Bi surfaces with different roughnesses were characterized by electron microscopy, cyclic voltammetry, and impedance spectroscopy. Two different strategies were used for preparation of porous bismuth layers onto Bi microelectrode surface in aqueous 0.1 M LiClO4 solution. Firstly, treatment at potential E < −2 V (vs. Ag|AgCl in sat. KCl) has been applied, resulting in bismuth hydride formation and decomposition into Bi nanoparticles which deposit at the electrode surface. Secondly, porous Bi layer was prepared by anodic dissolution (E = 1 V) of bismuth electrode followed by fast electroreduction of formed Bi3+ ions at cathodic potentials E = −2 V. The nanostructured porous bismuth electrode, with surface roughness factor up to 220, has negligible frequency dispersion of capacitance and higher hydrogen evolution overvoltage than observed for smooth Bi electrodes.  相似文献   

8.
O. Koga  S. Teruya  Y. Hori 《Electrochimica acta》2005,50(12):2475-2485
Voltammetric and infrared (IR) spectroscopic measurements were carried out to study adsorbed CO on two series of copper single crystal electrodes n(1 1 1)-(1 1 1) and n(1 1 1)-(1 0 0) in 0.1 M KH2PO4 + 0.1 M K2HPO4 at 0 °C. Reversible voltammetric waves were observed below −0.55 V versus SHE for adsorption of CO which displaces preadsorbed phosphate anions. The electric charge of the redox waves is proportional to the step atom density for both single crystal series. This fact indicates that phosphate anions are specifically adsorbed on the step sites below −0.55 V versus SHE. Voltammetric measurements indicated that (1 1 1) terrace of Cu is covered with adsorbed CO below −0.5 V versus SHE. Nevertheless, no IR absorption band of adsorbed CO is detected from (1 1 1) terrace. Presence of adsorbed CO on (1 1 1) terrace is presumed which is not visible by the potential difference spectroscopy used in the present work. IR spectroscopic measurements showed that CO is reversibly adsorbed with an on-top manner on copper single crystal electrodes of n(1 1 1)-(1 1 1) and n(1 1 1)-(1 0 0) with approximately same wavenumber of CO stretching vibration of 2070 cm−1. The IR band intensity is proportional to the step atom density. Thus CO is adsorbed on (1 1 1) or (1 0 0) steps on the single crystal surfaces. An analysis of the IR band intensity suggested that one CO molecule is adsorbed on every two or more Cu step atom of the monocrystalline surface. The spectroscopic data were compared with those reported for uhv system. The CO stretching wavenumber of adsorbed CO in the electrode-electrolyte system is 30-40 cm−1 lower than those in uhv system.  相似文献   

9.
The influence of ammonium thiocyanate (NH4SCN) on the mechanism of manganese electrodeposition from a chloride-based acidic solution was investigated by cyclic voltammetry and electrochemical quartz crystal microbalance (EQCM). The EQCM data were represented as plots dΔm dt−1 versus E, known as massograms. Because massograms are not affected by interference from the hydrogen evolution reaction, they clearly show the manganese reduction and oxidation processes. By comparing the voltammograms with their corresponding massograms, it was possible to differentiate mass changes due to faradaic processes from those due to non-faradaic processes. Morphology, chemical composition and structure of the manganese deposits formed in different potential ranges were analyzed by scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), and X-ray diffraction (XRD). The results showed that in the absence of NH4SCN, Mn(OH)2(s) is formed in the potential range −1.1 to −0.9 V due to the hydrogen evolution reaction in this region. At more cathodic potentials, the deposition of β-manganese and the inclusion of Mn(OH)2(s) into the deposit occur; both of these species underwent dissolution by non-faradaic processes during the anodic scan. In the presence of NH4SCN, the formation of α- and γ-manganese was observed. When the potential was ≤−1.8 V and [NH4SCN] exceeded 0.3 M, the α-manganese phase was favored.  相似文献   

10.
The potential of zero charge of oxide-covered metals (Epzc) is shown to be linear function of the isoelectric point of the oxide film (pHpzc). The linearity is displayed for 14 different metals having n-type semiconductor oxide films and for three metals having p-type semiconductor oxide films. Using experimental values from the literature, the slope of the linear plot of Epzc vs. pHpzc is observed to be −0.142 V for n-type oxides and −0.115 V for p-type oxides. The theoretical slope is −0.120 V, which is derived in this communication.  相似文献   

11.
An initial Raman study on the effects of intercalation for aprotic electrolyte-based electrochemical double-layer capacitors (EDLCs) is reported. In situ Raman microscopy is employed in the study of the electrochemical intercalation of tetraethylammonium (Et4N+) and tetrafluoroborate (BF4) into and out of microcrystalline graphite. During cyclic voltammetry experiments, the insertion of Et4N+ into graphite for the negative electrode occurs at an onset potential of +1.0 V versus Li/Li+. For the positive electrode, BF4 was shown to intercalate above +4.3 V versus Li/Li+. The characteristic G-band doublet peak (E2g2(i) (1578 cm−1) and E2g2(b) (1600 cm−1)) showed that various staged compounds were formed in both cases and the return of the single G-band (1578 cm−1) demonstrates that intercalation was fully reversible. The disappearance of the D-band (1329 cm−1) in intercalated graphite is also noted and when the intercalant is removed a more intense D-band reappears, indicating possible lattice damage. For cation intercalation, such irreversible changes of the graphite structure are confirmed by scanning electron microscopy (SEM).  相似文献   

12.
Electropolishing of NiTi shape memory alloys in methanolic H2SO4   总被引:2,自引:0,他引:2  
The electropolishing of NiTi shape memory alloys was surveyed electrochemically. Anodic polarization of NiTi up to 8 V was performed in various aqueous and methanolic H2SO4 solutions. The passivity could be overcome in methanolic solutions with 0.1moldm−3≤CH2SO4≤7moldm−3. The dissolution kinetics was studied in dependence of the polarization potential, the H2SO4-concentration, the water concentration and the temperature. For lower concentrations of sulfuric acids (CH2SO4≤0.3moldm−3) electropolishing conditions were not observed for potentials up to 8 V. The dissolution remained under Ohmic control. In the concentration range from 1 to 7 mol dm−3 a potential independent limiting current was registered depending linearly on the logarithm of concentration. The best results were obtained with a 3 mol dm−3 methanolic sulfuric acid at 263 K which yielded an electropolishing current of 500 A m−2 at a potential of 8 V. Surface roughness as well as current efficiency showed an optimum under these conditions.  相似文献   

13.
This study uses rotating ring-disk electrode (RRDE) and linear sweep voltammetry (LSV) to characterize oxygen reduction kinetics in alkaline solution on platinum electrodes with various thickness of hydrous oxide (oxyhydroxy) film. Oxyhydroxy films are created on Pt electrodes by pretreatment in 1.0 mol dm−3 KOH at a constant voltage. The pretreatment voltage ranges from −1.2 to 1.0 V and is increased stepwise before each new experimental run to produce seven discreet films. LSV plots show oxyhydroxy film thickness strongly inhibits oxygen reduction and is inversely proportional to RRDE oxygen reduction current ID for LSV voltages ED from −0.1 to −0.46 V, but this trend reverses at ED more negative than −0.46 V so that the worst-performing electrode becomes the best. However, this improvement disappears at around −0.8 V, suggesting this change involves a negatively charged ion, possibly embedded into the metal in the top few atomic layers either interstitially or substitutionally. The 1.0 V-pretreated electrode in the ED range from −0.46 to −0.9 V of highest oxygen reduction current also exhibits the lowest hydrogen peroxide production, with zero H2O2 produced at −0.6 V, indicating the brief presence of the oxyhydroxy film on the Pt surface has strong lingering effects. The post-oxyhydroxy Pt surface is very different than the native Pt for oxygen reduction pathway and efficiency. Reaction order with respect to oxygen is close to 1. The rate constants of the direct O2 to H2O electroreduction reaction are increased with decreasing the potential from −0.2 to −0.6 V, but the O2 to H2O2 electroreduction is contrary to this expectation. The rate constants of H2O2 decomposition on the oxyhydroxy film-covered Pt electrode are near constant around 1 × 10−4 cm s−1 at ED > −0.5 V.  相似文献   

14.
Liping Wang 《Electrochimica acta》2006,51(26):5961-5965
The electrochemical behaviour of the anticancer herbal drug emodin was investigated by cyclic voltammetry (CV) at glassy carbon electrode. In 0.05 M NH3-NH4Cl (50% ethanol, pH 7.2) buffer solution, a pair of quasi-reversible redox peaks at potentials of Ep1 = −0.688 V and Ep2 = −0.628 V and one irreversible anodic peak, which was a typical anodic peak of emodin, at Ep3 = −0.235 V appeared at a scan rate of 100 mV/s. The irreversible anodic peak currents are linearly related to the emodin concentrations in a range from 8.9 × 10−8 M to 7.8 × 10−6 M with a pre-concentration time of 80 s under −0.620 V. Using the established method without pretreatment and pre-separation, emodin in herbal drug was determined with satisfactory results. Moreover, the electrode process dynamics parameters were also investigated by electrochemical techniques.  相似文献   

15.
This work shows a comparative study of the incineration of 2-mM p-cresol and o-cresol in 1 M-H2SO4 in aqueous media. Microelectrolysis studies indicated that both the p-cresol and o-cresol oxidation were carried out via hydroxyl radicals (OH) formed by water oxidation in the boron-doped diamonds (BDD)-H2O-H2SO4-p-cresol and o-cresol interface. In both cases, the potential and current density ranges, where great amounts of OH are formed, were between 2.3 V ≤ E ≤ 2.75 V versus SHE and J = 10 mA cm−2. Electrolyses in an undivided FM01-LC reactor were performed at different Reynolds values 27,129 ≤ Re ≤ 42,631, and at J = 10 mA cm−2. For p-cresol and o-cresol, the rate of degradation was slow, however it increases slightly as a function of the Re, indicating that the oxidation involves a complex pathway; current efficiency also rises as a function of the Re. For p-cresol, the mineralization at Re = 42,631 reached 90%, with 71% current efficiency and an energy consumption of 7.84 kWh m−3; whereas o-cresol was mineralized to 84%, with 67% current efficiency and an energy consumption of 6.56 kWh m−3. The results obtained in this work demonstrated that o-cresol is more recalcitrant than p-cresol.  相似文献   

16.
In this article we systematically investigated self-assembly of short-chain thiols of thioctic acid (TA) and mercaptohexanol (MCH) on gold under potential control, Edc (−0.4, +0.4 and +0.7 V) and compared the results obtained with open circuit potential (EOCP). Effect of Edc on thiol self-asembly was inspected based on the changes in electrochemical parameters including interfacial capacitance (C), phase angle (Φ1Hz), current density difference (Δi), charge transfer resistance (Rct) through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Experimental results showed that Edc could not obtain stable short-chain self-assembled monolayers (SAMs) (TA and MCH) in a short time. Both TA and MCH had slow self-assembly dynamics and needed a long time (> 24 h) to achieve adsorption equilibrium. Furthermore, the negative potential Edc (−0.4 V) did not facilitate the ordering of SAMs. The ordering of TA-SAMs was found to be the best when assembled under Edc (+0.4 V), whereas that of MCH-SAMs was almost the same when assembled under either EOCP or Edc (+0.4, +0.7 V). We considered that permeation of ions and water molecules perhaps dominated the slow self-assembly dynamics of short-chain thiols (TA and MCH) under Edc and mutual interaction between adjacent chains of thiols played an important role in the ordering of SAMs.  相似文献   

17.
This work studies the effect of three additives, sodium lauryl sulfate (SLS), cetyltrimethylammonium bromide (CTABr) and arabic gum (AG) on zinc electrowinning on aluminum in a solution of 85 g L−1 Zn(II) (1.3 M) in 108 g L−1 H2SO4 (1.1 M). The influence of these three additives is analyzed during the different stages of the reduction process using chronopotentiometric techniques on an aluminum rotating disk electrode (RDE). Potential ranges (−1.05 < E < −0.85 V versus SHE) and current density (−51 < i < −0.2 mA cm−2) within which zinc electrodeposition takes place in the presence of the three different additives were established. These parameters were used to determine current efficiencies (Φ), evaluated by electrolysis on an aluminum rotating cylinder electrode (RCE); the zinc deposition efficiency in the presence of SLS, CTABr and AG, was 95%, 96% and 99%, respectively, were all greater than the efficiency obtained without any additive (WA), Φ = 84%. The homogeneity of the deposits at the end of electrolyses implied that the (RCE) promotes uniform current density on the electrode surface and, hence, can be considered a model cell to evaluate current efficiencies.  相似文献   

18.
Some polyanionic compounds, e.g. TiP2O7 and LiTi2(PO4)3 with 3D framework structure were proposed to be used as anodes of lithium ion battery with aqueous electrolyte. The cyclic voltammetry properties TiP2O7 and LiTi2(PO4)3 suggested that Li-ion de/intercalation reaction can occur without serious hydrogen evolution in 5 M LiNO3 aqueous solution. The TiP2O7 and LiTi2(PO4)3 give capacities of about 80 mAh/g between potentials of −0.50 V and 0 V (versus SHE) and 90 mAh/g between −0.65 V and −0.10 V (versus SHE), respectively. A test cell consisting of TiP2O7/5 M LiNO3/LiMn2O4 delivers approximately 42 mAh/g (weight of cathode and anode) at average voltage of 1.40 V, and LiTi2(PO4)3/5 M LiNO3/LiMn2O4 delivers approximately 45 mAh/g at average voltage of 1.50 V. Both as-assembled cells suffered from short cycle life. The capacity fading may be related to deterioration of anode material.  相似文献   

19.
The voltammetric behaviour of tetramethylthiourea (TMTU) dissolved in aqueous perchloric and sulphuric acid solutions on polycrystalline gold combined with in situ Fourier transform infrared reflection absorption spectroscopy (FTIRRAS) was investigated. Conventional and triangular modulated voltammetry and rotating disc electrode data demonstrate the occurrence of two redox surface processes in the potential ranges −0.1≤E≤−0.3  V and 0.7≤E≤0.8  V (versus SHE), respectively. These processes would involve the participation of TMTU adsorbates. The redox surface process observed in the range − 0.1 to − 0.3 V can be related to the electrosorption of TMTU. The absence of infrared absorption bands from these adsorbates agrees with a flat, almost parallel adsorption of TMTU molecules on gold that has been already reported. In the range 0.4 V ≤E≤0.8  V both electrochemical and spectroscopic data indicate the anodic formation of soluble gold-TMTU complex and tetramethylformamidine disulphide (TMFDS2+) ions presumably via Au(TMTU)+ adsorbates. The kinetics of soluble gold-TMTU complex ion formation is under diffusion control, whereas the formation of TMFDS2+ ions behaves as a rather irreversible process with the anodic slope, derived from current-potential curves, ∂E/∂log?I=0.120  V decade−1 at 298 K. At E>1.2  V, the global electro-oxidation of both TMTU and TMFDS2+ species yields carbon dioxide, sulphate ions and carbonyl-containing compounds, as indicated by IR spectra. These reactions involve the participation of oxygen-containing adsorbates produced from water electro-oxidation on gold.  相似文献   

20.
The corrosion behaviour of steel was studied in aerated near neutral citrate solutions without and with various concentrations of NaCl. The potentiodynamic anodic polarization curve in 0.1 M citrate solution exhibits four anodic peaks A1, A2, A3 and A4 prior to the oxygen evolution reaction. Addition of Cl ions to the solution enhances the four peaks currents, specially A3, which is followed by pitting corrosion. The negative going scans of the cyclic voltammograms show two anodic reactivation peaks A5 and A6 and one cathodic plateau P1. A diffusion controlled process in the potential range of A1, A2 and P1 was detected by RDE experiments. The potentiostatic current time transients, at different concentrations of NaCl and applied potentials Ea > A3, were studied. The pit nucleation rate (ti−1) is found to increase with increasing the concentration of NaCl and the applied anodic potential. The impedance spectra exhibit four different behaviours depending on the potential range used. They were fitted with a single time constant circuit at Ea < −700 mV. However, at −700 mV < Ea < −480 mV, they were fitted with a circuit with two time constants. At Ea > −480 mV, the second semicircle is replaced by negative polarization resistance which is disappeared at Ea > −300 mV. The electrode impedance was found to decrease with the applied potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号