首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of oxidation of surface layers of irradiated films made of low-density polyethylene (LDPE), isotactic biaxially oriented polypropylene (BOPP) and poly(ethylene terephthalate) (PET) are discussed. The films were modified in the air atmosphere using a high-energy electron beam generated by a linear accelerator. Oxidation of surface layers of 3.7 nm thickness upon doses of up to 500 kGy was investigated by X-ray photoelectron spectroscopy. It was found that the extents of oxidation were ca. 22, 11 and 8% for BOPP, LDPE and PET, respectively.  相似文献   

2.
The effects of the unit corona-treatment energy on the contact angle of various liquids, on the surface free energy, on the extent of oxidation of a surface layer, and on the adhesion of acrylic adhesive were studied using a biaxially-oriented polypropylene (BOPP) film. The surface free energy was determined with the van Oss-Chaudhury-Good (VCG) approach as well as with the wettability method. The extent of oxidation of the surface layer of the corona-treated BOPP film was evaluated with X-ray photoelectron spectroscopy. The adhesion strength of joints between the BOPP film and the acrylic adhesive was measured using the 180°-peel test.

In the range of the unit corona-treatment energy up to 1.2 kJ/m2, a rapid increase in the surface free energy with the treatment energy is observed. In the range above that value, the surface free energy rises relatively slowly. The extent of oxidation of the surface layer and the adhesion strength of joints between the BOPP film and the acrylic adhesive are approximately in direct proportion to the unit energy of the corona treatment. A five-fold growth of the adhesion strength of the studied joints within the examined range of the treatment energy was found.  相似文献   

3.
Abstract

Flame retardancy of polypropylene films was studied by plasma polymerisation technique. The surface of BOPP film was modified by boron containing plasma polymers at different plasma conditions. Plasma polymer coated polypropylene films were examined by flame retardancy test (limiting oxygen index, LOI) and TGA. Boron containing plasma polymer deposition on the film surface showed an improvement of flame retardancy. Furthermore, TGA thermograms pointed out that the first degradation temperature of treated polypropylene film was increased from 331 to 396°C, and the second degradation temperature was shifted from 401 to 455°C. Also, the plasma polymers were characterised by FTIR spectroscopy and XPS. According to XPS results, the BOPP surfaces treated with TMB showed significant difference in the composition with respect to the untreated sample. The FTIR spectra of plasma polymers obtained indicated that when the treatment time was increased to 60 min with a constant discharge power at 80 W, the absorption intensities of all the functional groups increased. As a result, boron containing plasma polymer treatment was found to be an effective method in enhancing the flame retardancy of BOPP film.  相似文献   

4.
Chemical composition, morphology, and crystalline structure of low density polyethylene (LDPE) films surface grafted with acrylic acid (AA) using corona discharge were studied by attenuated total reflection infrared (ATR-IR), electron spectroscopy for chemical analysis (ESCA), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and wide angle X-ray diffraction (WAXD) techniques. The grafted film surface is covered with grafted chains. After grafting for 3.0 h in 20% aqueous solution of AA, the depth of the grafted layer is more than 10 nm. A grain structure was observed on the grafted surfaces which was probably caused by the isolated dispersion of active sites generated by corona discharge, and these active sites initiated the graft copolymerization. However, surfaces of grafted films were smoother than that of ungrafted ones. DSC curves of grafted films show a small peak at about 100°C due to vaporization of adsorbed water. The longer the graft copolymerization time, i.e. the higher the graft degree of AA on LDPE, the higher the amount of adsorbed water. The position of each peak in WAXD patterns, crystal axial length, crystal plane distance and crystal grain size remain almost unchanged during the graft copolymerization time of 2.0 h. However, when the graft copolymerization time reaches 3.0 h, twin peaks at about 21.4° and 22.0° are observed, indicating that a different crystal form is formed at longer copolymerization time, i.e. at a higher graft degree.  相似文献   

5.
Ultra-thin films (1 and 3 monolayers) of Pd were deposited on the Au(111) surface and then characterized by X-ray photoelectron spectroscopy (XPS), X-ray excited Auger spectroscopy (XAES), low-energy electron diffraction (LEED), and X-ray photoelectron diffraction (XPD). For the 1 ML Pd film annealed at 450 °C, XPS and XAES results indicated that Pd had diffused into the Au substrate. For the 3 ML Pd film deposited at room temperature, the comparison between experimental and theoretical XPD results indicated approximately 30% of the surface was formed by 2 ML Au layers, and 70% of the surface, by 1 ML Au layers.  相似文献   

6.
The effects of the unit corona-treatment energy on the contact angle of various liquids, on the surface free energy, on the extent of oxidation of a surface layer, and on the adhesion of acrylic adhesive were studied using a biaxially-oriented polypropylene (BOPP) film. The surface free energy was determined with the van Oss-Chaudhury-Good (VCG) approach as well as with the wettability method. The extent of oxidation of the surface layer of the corona-treated BOPP film was evaluated with X-ray photoelectron spectroscopy. The adhesion strength of joints between the BOPP film and the acrylic adhesive was measured using the 180°-peel test.

In the range of the unit corona-treatment energy up to 1.2 kJ/m2, a rapid increase in the surface free energy with the treatment energy is observed. In the range above that value, the surface free energy rises relatively slowly. The extent of oxidation of the surface layer and the adhesion strength of joints between the BOPP film and the acrylic adhesive are approximately in direct proportion to the unit energy of the corona treatment. A five-fold growth of the adhesion strength of the studied joints within the examined range of the treatment energy was found.  相似文献   

7.
ABSTRACT

This study investigated the correlation between surface composition and peeling resistance in food packaging films by studying the heat aging of fabricated films over varying periods of time. The films consisted of a layer of aluminum (Al) metallized, biaxially oriented polypropylene (BOPP) bonded with a polyurethane (PU) adhesive onto another polymeric layer of low-density polyethylene (LDPE). The Al metallized films were prepared by physical vapor deposition (PVD) and aged at 60°C for either 5 or 15 days. The resulting aluminum surfaces were analyzed using X-ray photoelectron spectroscopy (XPS) and found to contain aluminum oxide (Al2O3) and trihydroxide (Al(OH)3). The XPS characterization also revealed a 29% increase in the Al(OH)3 layer thickness of the aged sample relative to a non-aged sample. Atomic force microscopy (AFM) was applied on investigations of possible morphology changes. The aluminum and PU adhesive surface energies were also determined using contact angles measurements and the aluminum surface energy was found to increase by as much as 11.7% compared to the non-aged sample, while the PU adhesive surface energy was at least 65% higher than that of the metallic substrate. The peeling resistance of the laminated aluminum was determined by average peel strength measurements and it was found that the variation in peel strength was related to changes in the Al2O3 layer thickness. The delaminated samples were analyzed using scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) and showed the cohesive failure of the aluminum film.  相似文献   

8.
Thin films of ZnTe were deposited at angles of 0°, 20°, 40°, 60° and 80° by thermal evaporation. The chemical, structural, morphological, optical, and photocurrent properties of ZnTe thin films were investigated. The elemental composition of the films was investigated by energy dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS). EDX and XPS analyses showed that at lower angles (0° and 20°), the deposited films were Te-rich, at 40°, the deposited film was nearly stoichiometric; and at higher angles (60° and 80°), the deposited films were Zn-rich. X-ray diffraction (XRD) analysis showed that all films were polycrystalline. X-ray diffraction patterns showed that lower-angles-deposited films had an extra peak at 2θ =?36.47° that belongs to Te element. Atomic force microscopy analysis revealed that the surface roughness of films was increased by increasing the deposition angle from 0° to 80° because shadowing effect raised due to an oblique angle. It was observed that higher-angles-deposited films (ZnTe-60°, and ZnTe-80°) showed less transmittance and high reflectance compared to lower-angles-deposited films because of high metallic Zn content in these films. Current-voltage (I-V) measurements showed that nearly stoichiometric (ZnTe-40°) film showed better photocurrent response compared to non-stoichiometric films (ZnTe-0°, ZnTe-20°, ZnTe-60°, and ZnTe-80°).  相似文献   

9.
The effects of the specimen temperature of low-density polyethylene (LDPE) in O2 plasma treatment were studied to enhance the amount of hydrophilic functional groups introduced and to reduce the aging effect. The specimen temperature was varied from 25°C to 100°C. The smallest water contact angle was obtained with the 45°C specimen and the largest amount of hydrophilic functional groups was introduced with the 100°C specimen, as determined by X-ray photoelectron spectroscopy (XPS). Therefore, a two-step plasma treatment with two different specimen temperatures, i.e. 100°C followed by 45°C, decreased the water contact angle and reduced the aging effect. It appears that the hydrophilic functional groups introduced were located at the specimen surface (about 0.5 nm) at low temperature and that the aging effect was reduced due to the hydrophilic functional groups formed inside (0.5-8 nm) at high specimen temperature. The aging rate and the diffusion coefficient were also estimated, depending on the specimen temperature, using the experimental aging data.  相似文献   

10.
This work represents multilayer films with sandwich structure by grafting hyper-branched aromatic polyamide (HBP) on both sides of biaxially oriented polypropylene (BOPP) (HBP BOPP HBP). BOPP serves as the middle layer to offer high breakdown strength and HBP acts as surface layers to boost the dielectric constant. As a result, the dielectric constant increases significantly from 2.2 of control BOPP to 5.5 (almost increased 1.5 times) after grafting 2.06 μm HBP surface layers, while the dielectric loss still remains at a very low level (<0.03). In addition, all HBP BOPP HBP sandwich-structured films show higher charge energy density than that of unmodified BOPP. For instance, the discharge energy density of HBP BOPP HBP (1-20-1) film is up to 2.38 J/cm3 at an applied electric field of 400 kV/mm, which increases about 36% over that of pure BOPP (i.e., 1.75 J/cm3). Meanwhile, charge–discharge efficiency retains about 90%. This work offers a simple strategy to fabricate polymer-based high performance dielectric composites.  相似文献   

11.
Clad aluminium alloy was pretreated by immersion in boiling water for times ranging between 30 s and 4 h. The chemical and physical properties of the films produced in the 100°C water were characterized by techniques including X-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectroscopy (RBS), scanning electron microscopy (SEM), and secondary ion mass spectrometry (SIMS). The durability of the bonds formed between the boiling water films and a rubber-toughened epoxy adhesive was assessed in terms of the film properties and fracture analysis of failed wedge specimens. In the early pretreatment stage, bond durability was limited by the fracture of the porous oxide film at the film-metal interface. For immersion times greater than 4 min, a decrease in film porosity and bond durability was observed.  相似文献   

12.
The effects of aging temperature and time on the adhesion properties of oxygen plasmatreated low-density polyethylene (LDPE) were investigated. As the aging temperature and time increased, surface rearrangement and the migration of molecules containing polar functional groups into the bulk were accelerated to the surface to form a hydrophobic surface. The adhesion strength of oxygen plasma-treated LDPE/aluminum joints was measured using a 90° peel test by varying the plasma treatment time and aging temperature. The adhesion strength was constant, regardless of the plasma treatment time. As the aging temperature increased, the adhesion strength of the LDPE/aluminum joints decreased and the locus of failure changed from cohesive to interfacial failure. It was also found that the polar functional groups buried in the bulk could be reoriented to the surface in a polar environment. This study also investigated whether repeated oxygen plasma treatment would increase the concentration of polar functional groups at the surface and reduce the surface rearrangement and the migration of molecules containing polar functional groups during aging. Contact angle measurements and X-ray photoelectron spectroscopy (XPS) showed that repeated oxygen plasma treatments increased the concentration of polar functional groups at the surface. However, the aging time between plasma treatments had a negligible effect on the concentration of polar functional groups at the surface.  相似文献   

13.
Polyethylene wastes, particularly as films, have accumulated over the last several decades resulting in a major visual litter problem. The aim of this study was to investigate the ability of chemical reagents to oxidize the low‐density polyethylene (LDPE) film surface to increase their susceptibility toward photodegradation and thermal degradation. Three chemical agents, namely, potassium permanganate, potassium persulfate, and benzoyl peroxide, were used to oxidize the film surface to generate chromophoric groups, such as carbonyl groups, which are the main reason for the enhanced environmental degradation of photolytic polymers, such as ethylene–carbon monoxide and ethylene–vinyl ketone copolymers. For the chemical treatment, LDPE films of 70 ± 5 μm thickness were prepared by a film‐blowing technique and subsequently reacted with the aforementioned oxidizing agents. To aid the oxidation process, the reaction with potassium persulfate and potassium permanganate was performed under microwave irradiation heating. In the case of benzoyl peroxide aided oxidation, the films were subjected to repeated coating–heating treatments up to a maximum of 10 cycles. The treated films were subjected to accelerated aging, that is, xenon‐arc weathering and air‐oven aging (at 70°C), for extended time periods. The chemical and physical changes induced as a result of aging were followed by the monitoring of changes in the mechanical, structural, and thermal properties. The results indicate that the surface‐oxidized LDPE films exhibited enhanced susceptibility toward degradation; however, the extent was reduced as compared to photolytic or other degradable compositions. The ability of the chemicals to initiate degradation followed the order potassium persulfate < potassium permanganate < benzoyl peroxide. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
An effective surface activation is crucial for high-speed roll-to-roll coating of functional films for printed electronics applications. In this article, we report a study of surface treatment of three types of poly(ethylene terephthalate) (PET) films by an argon/oxygen atmospheric pressure plasma and an ambient air atmospheric pressure plasma to obtain the required wettability for subsequent slot die coating of transparent conductive polymer layer using a poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) ink. Prior to plasma treatment, the PET surfaces, which differ in manufacturing process of their preparation, were characterized by X-ray photoelectron spectroscopy. The surface changes after the plasma treatments were characterized by water contact angle measurement and atomic force microscopy. We found that the water contact angles of the three types of untreated PET surfaces were 80.9°, 75.9°, and 66.3°, respectively, and the water contact angles after argon/oxygen plasma treatment at treatment speed of 1 m · min?1 decreased to 36.2°, 31.9°, and 40.9°, respectively. These conditions were stable from 1 up to 4 days, which are longer than reported values of 15–60 min and sufficient for roll-to-roll coating processes.  相似文献   

15.
We prepared and characterized active, oxygen‐scavenging, low density polyethylene (LDPE) films from a non‐metallic‐based oxygen scavenging system (OSS) containing 1, 3, 5, 10, and 20% of gallic acid (GA) and potassium chloride (PC). We compared the surface morphology and mechanical, permeability, and optical properties of the oxygen‐scavenging LDPE film with those of pure LDPE film. The surface morphology, gas barrier, and thermal properties indicate that the OSS was well incorporated into the LDPE film structure. The surface roughness of the film increased with the amount of oxygen scavenging material. The oxygen and water vapor permeability of the developed film also increased with the amount of oxygen scavenging material, though its elongation decreased. The oxygen scavenging capability of the prepared film was analyzed at different temperatures. The initial oxygen content (%) in the vial headspace, 20.90%, decreased to 16.6% at 4 °C, 14.6% at 23 °C, and 12.7% at 50 °C after 7 days of storage with the film containing 20% OSS. The film impregnated with 20% organic oxygen scavenging material showed an effective oxygen scavenging capacity of 0.709 mL/cm2 at 23 °C. Relative humidity triggered the oxygen scavenging reaction. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44138.  相似文献   

16.
To improve the interfacial adhesion between evaporated copper film and low‐density polyethylene (LDPE) film, the surface of LDPE films was modified by treating with chromic acid [K2Cr2O7/H2O/H2SO4 (4.4/7.1/88.5)]/oxygen plasma. Chromic‐acid‐etched LDPE was exposed to oxygen plasma to achieve a higher content of polar groups on the LDPE surface. We investigated the effect of the treatment time of chromic acid in the range of 1–60 min at 70°C and oxygen plasma in the range of 30–90 sec on the extent of polar groups created on the LDPE. We also investigated the surface topography of and water contact angle on the LDPE film surface, mechanical properties of the LDPE film, and adhesion strength of the evaporated copper metal film to the LDPE film surface. IR and electron spectroscopy for chemical analysis revealed the introduction of polar groups on the modified LDPE film surface, which exhibited an improved contact angle and copper/LDPE adhesion. The number of polar groups and the surface roughness increased with increasing treatment time of chromic acid/plasma. Water contact angle significantly decreased with increasing treatment time of chromic acid/plasma. Combination treatment of oxygen plasma with chromic acid drastically decreased the contact angle. When the treatment times of chromic acid and oxygen plasma were greater than 10 min and 30 sec, respectively, the contact angle was below 20°. With an increasing treatment time of chromic acid, the tensile strength of the LDPE film decreased, and the film color changed after about 10 min and then became blackened after 30 min. With the scratch test, the adhesion between copper and LDPE was found to increase with an increasing treatment time of chromic acid/oxygen plasma. From these results, we found that the optimum treatment times with chromic acid and oxygen plasma were near 30 min and 30 sec, respectively. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 1677–1690, 2001  相似文献   

17.
The surface degradation and production of low molecular weight oxidized materials (LMWOM) on biaxially oriented polypropylene (BOPP) and low‐density polyethylene (LDPE) films was investigated and compared for two different dielectric barrier discharge (DBD) treatment types, namely air corona and nitrogen atmospheric pressure glow discharge (N2 APGD). Contact angle measurements, X‐ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) analyses were performed in conjunction with rinsing the treated films in water. It is shown that N2 APGD treatments of both polyolefins result in much less surface degradation, therefore, allowing for a significantly higher degree of functionalization and better wettability. Hydrophobic recovery of the treated films has also been studied by monitoring their surface energy (γs) over a period of time extending up to several months after treatment. Following both surface modification techniques, the treated polyolefin films were both found to undergo hydrophobic recovery; however, for N2 APGD modified surfaces, γs ceases to decrease after a few days and attains a higher stable value than in the case of air corona treated films. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1291–1303, 2004  相似文献   

18.
The non-thrombogenicity of oxygen-plasma-treated DLC films was investigated as surface coatings for medical devices. DLC films were deposited on polycarbonate substrates by a radio frequency plasma enhanced chemical vapor deposition method using acetylene gas. The deposited DLC films were then treated with plasma of oxygen gas at powers of 15 W, 50 W, and 200 W. Wettability was evaluated by water contact angle measurements and the changes in surface chemistry and roughness were examined by X-ray photoelectron spectroscopy and atomic force microscope analysis, respectively. Each oxygen-plasma-treated DLC film exhibited a hydrophilic nature with water contact angles of 11.1°, 17.7° and 36.8°. The non-thrombogenicity of the samples was evaluated through the incubation with platelet-rich plasma isolated from human whole blood. Non-thrombogenic properties dramatically improved for both 15 W- and 50 W-oxygen-plasma-treated DLC films. These results demonstrate that the oxygen plasma treatment at lower powers promotes the non-thrombogenicity of DLC films with highly hydrophilic surfaces.  相似文献   

19.
In this study, a surface modification of the poly (ethylene terephthalate) (PET) film using TiO2 photocatalytic treatment was investigated. In order to enhance the adhesion strength between the PET film and the electroless copper film, the effects of TiO2 crystal forms, TiO2 particle sizes, and TiO2 content, as well as treatment condition, upon the surface contact angle, surface characterization, and adhesion strength were investigated. Anatase TiO2 with a particle size of 5 nm had a high catalytic activity and dispersibility in aqueous solution. After the optimal photocatalytic treatment, the surface contact angle of the PET film decreased from 84.4° to 19.8°, and the surface roughness of the PET film increased from 36 to 117 nm. The adhesion strength between the PET film and the electroless copper film reached 0.89?KN?m?1. X-ray photoelectron spectroscopy analyses indicated the carbonyl group was formed on the PET surface after photocatalytic treatment, and the surface hydrophilicity was improved. Consequently, TiO2 photocatalytic treatment is an environmentally friendly and effective method for the surface modification of the PET film.  相似文献   

20.
Surface modification of diamond-like carbon (DLC) film was performed using a hyperthermal atomic fluorine beam on the purpose of production of hydrophobic surface by maintaining the high hardness of DLC film. By the irradiation of atomic fluorine beam of a 1.0 × 1020 atoms/cm2, the contact angle of a water drop against the DLC surface increased from 73° to 111°. The formation of CF3, CF2 and CF bonding on the modified DLC surface was confirmed from the measurements of X-ray photoelectron spectra and near-edge X-ray absorption fine structure spectra. Irradiation of hyperthermal atomic fluorine beam was concluded to produce insulator fluorine-terminated DLC film, which has high F content on the surface, by the taking of the use of neutral atomic beam as a fluorine source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号