首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
以分析纯In2O3和WO3为原料,采用固相反应法制备In2W3O12陶瓷。利用X射线衍射仪、场发射扫描电子显微镜、热重分析仪、差示扫描量热仪和热机械分析仪对样品的物相组成、微观结构、相变和热膨胀特性进行了表征。结果表明:在900℃烧结6h可制备出纯的单斜相In2W3O12陶瓷,In2W3O12陶瓷断面晶粒均匀,平均尺寸为4~6μm。In2W3O12陶瓷在253.34℃发生单斜相到斜方相的相转变,单斜相的In2W3O12陶瓷显示正热膨胀,在27~249℃,其平均热膨胀系数为16.51×10-6℃-1,斜方相的In2W3O12陶瓷显示负热膨胀,在273~700℃,其平均热膨胀系数为-3.00×10-6℃-1。  相似文献   

2.
以分析纯In2O3和WO3为原料,采用固相反应法制备In2W3O12陶瓷。利用X射线衍射仪、场发射扫描电子显微镜、热重分析仪、差示扫描量热仪和热机械分析仪对样品的物相组成、微观结构、相变和热膨胀特性进行了表征。结果表明:在900℃烧结6h可制备出纯的单斜相In2W3O12陶瓷,In2W3O12陶瓷断面晶粒均匀,平均尺寸为4~6μm。In2W3O12陶瓷在253.34℃发生单斜相到斜方相的相转变,单斜相的In2W3O12陶瓷显示正热膨胀,在27~249℃,其平均热膨胀系数为16.51×10-6℃-1,斜方相的In2W3O12陶瓷显示负热膨胀,在273~700℃,其平均热膨胀系数为-3.00×10-6℃-1。  相似文献   

3.
以分析纯Er2O3和WO3为原料,采用固相法制备Er2W3O12陶瓷,并利用X射线衍射仪(XRD)、场发射扫描电镜(FESEM)和热重分析仪(TG)对其结构组分、断面形貌和吸湿特性进行表征.采用热膨胀仪和变温XRD对Er2W3O12陶瓷的负热膨胀特性进行表征.结果表明:在950 ℃烧结6 h制得的Er2W3O12陶瓷结构致密.Er2W3O12材料在室温下容易吸湿,在120 ℃完全失去吸湿水,表现为正交相的Er2W3O12陶瓷,具有良好的负热膨胀性能,其在138~700 ℃的平均热膨胀系数为-7.94×10-6 K-1.变温XRD分析发现:Er2W3O12陶瓷沿三个晶轴方向均表现为负热膨胀,在100~600 ℃温度区间内,Er2W3O12陶瓷的热膨胀系数为-7.81×10-6 K-1.  相似文献   

4.
以分析纯Al2O3和MoO3为原料,采用固相法制备出负热膨胀材料Al2Mo3O12陶瓷.利用X射线衍射仪(XRD)、场发射扫描电子显微镜(FE-SEM)和高分辨透射电子显微镜(HR-TEM)对样品的成分、断面形貌和微观结构进行分析;利用变温拉曼光谱仪、差示扫描量热仪( DSC)和热机械分析仪(TMA)对样品的相变温度和热膨胀特性进行分析.实验结果表明:在750℃烧结12h产物为纯度较高的单斜相Al2Mo3O12陶瓷,其断面的晶粒呈不规则的多边形、排列致密,晶粒均匀、大小约为30 μm;相变点为202℃,低频声子模和高频光学声子模对负热膨胀都有贡献.在230 ~ 700℃其平均热膨胀系数为-1.918×10-6/C,700 ~ 900℃的平均热膨胀系数为-4.6×10-/C.  相似文献   

5.
用水热法并经570 ℃热处理6 h制备了ZrW2O8粉体,对水热法制备的前驱体进行了热重-差热分析.用X射线粉末衍射、扫描电子显微镜对ZrW2O8粉体的微观结构及形貌进行表征,结果表明:ZrW2O8粉体为单一α-ZrW2O8相,粉体颗粒为规则的长方体棒状,尺寸约为1.2μm×1.2μm×10μm.原位X射线粉末衍射分析表明:所得ZrW2O8粉体具有很好的负热膨胀特性,从室温到500 ℃,其热膨胀系数为-6.30×10-6 ℃-1;在150~175 ℃温度范围内发生了α-ZrW2O8向β-ZrW2O8相的转变.  相似文献   

6.
用Y2O3掺杂La2Zr2O7制备(La1–xYx)2Zr2O7(x=0,0.1,0.2,x为摩尔分数)陶瓷材料,利用X射线衍射仪、扫描电子显微镜、激光导热仪以及热膨胀仪分别对其物相结构、显微形貌、热导率及热膨胀性能进行表征。结果表明,(La1–xYx)2Zr2O7为立方烧绿石结构,显微结构致密,在室温至1 450℃范围内具有良好的高温相稳定性。La2Zr2O7掺杂小离子半径Y3+可提高其热膨胀系数(x=0.2),降低热扩散系数,并在高温下表现出类似于玻璃的超低热导率。1 000℃时,La1.6Y0.4Zr2O7的热导率为1.28 W/(m·K),平均热膨胀系数达到9.7×10–6/K。  相似文献   

7.
以分析纯ZrO2和WO3粉体为原料,采用分步固相法制备出ZrW2O8粉体,冷压成型并在1200℃下烧结4 h后炉冷、空气冷、水冷和液氮淬冷处理.采用X射线衍射仪(XRD)、扫描电镜(SEM)和热膨胀仪对合成样品的晶体结构、断面形貌和热膨胀性能进行表征.试验结果表明:随着冷却速度的增加,ZrW2O8分解为ZrO2和WO3的比例降低,随炉冷却制备的ZrW2O8完全分解为ZrO2和WO3;空冷制备的ZrW2O8.部分分解为ZrO2和WO3;在水和液氮中淬火得到纯ZrW2O8.在室温到600℃的测试区间内,采用空冷、水和液氮淬冷制备的ZrW2O8.的负热膨胀系数分别为-3.96×10-5K-1、-4.49×10-6 K-1和-5.95×10-6 K-1.  相似文献   

8.
以SiO2—Al2O3—MgO—K2O—MgF2体系玻璃为基础,采用整体析晶法,在高温条件下制备出堇青石/氟金云母玻璃陶瓷。借助于综合热分析仪、X射线衍射仪和扫描电子显微镜等分析手段,研究了玻璃陶瓷的析晶机制、显微形貌和断裂机制。结果表明:所制备的玻璃陶瓷主晶相为板条状氟金云母和β-堇青石,经1 000℃保温3h热处理后,主晶相转变为镁橄榄石;以堇青石和氟金云母为主晶相的玻璃陶瓷断裂机理为穿晶断裂,以镁橄榄石为主晶相的玻璃陶瓷为沿晶断裂。在基础玻璃中添加5%B2O3,可抑制氟金云母相的析出,并提高玻璃陶瓷的致密度。  相似文献   

9.
以分析纯Y2O3、La2O3和MoO3为原料,采用固相反应法制备Y2–xLaxMo3O12(0≤x≤2.00)系列陶瓷。利用X射线衍射仪、场发射扫描电子显微镜、能谱仪、热重分析仪和热机械分析仪对样品的物相组成、微观结构、吸湿性和热膨胀特性进行了表征。结果表明:在750℃烧结10 h可制备得到Y2–xLaxMo3O12(0≤x≤2.00)系列陶瓷;Y2–xLaxMo3O12(0≤x≤2.00)陶瓷断面晶粒呈不规则多边形,为多孔结构。热重分析发现:Y2Mo3O12陶瓷易吸湿,掺入La后吸湿现象消失。在178~600℃测试温度范围内,随La掺入量增加,Y2–xLaxMo3O12(0≤x≤2.00)系列陶瓷样品的热膨胀系数呈增大趋势。  相似文献   

10.
Bi2O3对堇青石陶瓷的烧结行为、相变和热膨胀性能的影响   总被引:1,自引:0,他引:1  
采用X射线衍射仪、差热分析仪和热膨胀仪等手段研究了由氧化物粉末(MgO、Al2O3和SiO2)制备堇青石陶瓷时,添加Bi2O3对堇青石陶瓷相变和性能的影响,分析了Bi2O3在饶结过程中的作用机理是低温产生液相促进烧结。试验表明,Bi2O3能明显降低饶结温度,在1250℃烧成3h后的陶瓷是由α堇青石和少量的μ堇青石组成。随着Bi2O3含量增加,陶瓷的致密度和热膨胀系数逐渐升高。Bi2O3的添加量(质量分数)为0.04,原料相石英消失。Bi—O膨胀系数较Si—O的大和Bi^3 离子进入堇青石晶格中是引起堇青石陶瓷热膨胀系数升高的主要原因。  相似文献   

11.
陶瓷文摘     
《陶瓷》1976,(3)
氮氧化硅和氮的化合物在它们结构中的热膨胀《英国陶瓷学会汇刊》1975,74(2),49(英)α——氮化硅,β——氮化硅和氧化硅粉末在1020℃时,用 X——射线衍射法,可以获得它们的热膨胀数据。Si——N 和Si——O 键合是3.1和1.3×10~(-6)/C°,  相似文献   

12.
以Gd2O3、Yb2O3、Y2O3和ZrO2为原料,通过固相合成法制备5Gd2O3-6Yb2O3-10YSZ热障涂层粉末,又称GYbYSZ。以X射线衍射仪(XRD)和场发射扫描电镜对材料相结构和显微组织进行表征。用激光热导率测试仪和热膨胀仪测试样品热导率和热膨胀系数。结果表明,1600℃制备材料物相为高温相c相;稀土氧化物改性后YSZ块体材料在1000℃下热导率达到1.51 W/(m·K);1200℃热膨胀系数为11.25×10-6/K;在室温至1500℃范围内,不发生相变,高温稳定性优异。  相似文献   

13.
采用固相法合成了室温下稳定的立方相白榴石。探讨了Cs_2O的添加量、热处理温度及保温时间对立方相白榴石的形成及稳定的影响,用扫描电子显微镜分析了合成的白榴石粉体的显微形貌,热膨胀仪测定了立方相白榴石粉体的热膨胀系数。研究表明:按照白榴石的化学计量比,通过适当添加CsNO_3和热处理,当部分K_2O被Cs_2O取代后,可以获得室温下稳定的立方相白榴石。该立方相白榴石在30~700℃范围内的平均热膨胀系数约为17.3×10~(-6)/℃,明显低于常温下稳定的四方相白榴石的热膨胀系数。  相似文献   

14.
以钾长石、碳酸钾和纳米氧化锆为主要原料,通过高温固相法,一次性合成了一种牙用白榴石-氧化锆复合烤瓷粉.利用X射线衍射仪和扫描电镜分析烤瓷材料的物相结构,利用万能试验机和热膨胀仪分别测试样品的弯曲强度和热膨胀系数.结果表明:纳米氧化锆的加入,既有利于烤瓷材料的弯曲强度的提高,又有助于调节烤瓷材料的热膨胀系数.当氧化锆的添加量为8%(质量分数),合成烤瓷粉的煅烧温度为1 200 ℃,熔附温度为900 ℃时,样品的弯曲强度为112MPa,热膨胀系数为14.4×10-6/K.  相似文献   

15.
以硝酸氧锆、钼酸铵和钨酸铵为原料,采用水合前驱物分解法合成了负热膨胀粉体立方相ZrW_(1.7)Mo_(0.3)O_8。分别采用差热-热重分析(TG-DSC)、X射线粉末衍射、扫描电镜(SEM)等分析测试手段,研究了前驱体的晶化过程、产物的结晶度和形貌。结果表明,采用该方法能合成出纯净的立方ZrW_(1.7)Mo_(0.3)O_8粉体,其负热膨胀系数为-6.16×10~(-6)K~(-1)。  相似文献   

16.
采用X射线衍射仪、差热分析仪和热膨胀仪等手段研究了由氧化物粉末 (MgO、Al2 O3 和SiO2 )制备堇青石陶瓷时 ,添加Bi2 O3 对堇青石陶瓷相变和性能的影响 ,分析了Bi2 O3 在烧结过程中的作用机理是低温产生液相促进烧结。试验表明 ,Bi2 O3 能明显降低烧结温度 ,在 12 5 0℃烧成 3h后的陶瓷是由α堇青石和少量的 μ堇青石组成。随着Bi2 O3 含量增加 ,陶瓷的致密度和热膨胀系数逐渐升高。Bi2 O3 的添加量 (质量分数 )为 0 .0 4 ,原料相石英消失。Bi-O膨胀系数较Si-O的大和Bi3 + 离子进入堇青石晶格中是引起堇青石陶瓷热膨胀系数升高的主要原因。  相似文献   

17.
通过传统熔融法制备了添加MgO,ZnO和BaO的Li2O-Al2O3-SiO2(LAS)微晶玻璃。并通过微分热分析、X射线衍射和扫描电镜研究了MgO,ZnO和BaO对LAS玻璃的结晶化影响,测量了LAS的热膨胀系数(coefficient of thermal expansion,CTE)。结果表明:添加1.0%~1.5%(质量分数,下同)MgO,1.0%~3.0%ZnO或1.5%~3.5%BaO的LAS微晶玻璃在500℃以下都表现出负的热膨胀性。随着MgO含量的减少,形成了β锂辉石固溶体(LiAlSi3O8)并导致CTE显著增大。当添加0.5%MgO时,从100~700℃具有0.5120×10-6/℃到1.6913×10-6/℃的正膨胀系数。  相似文献   

18.
以硼泥为主要原料,经干压成型后于1100~1260℃烧结保温3 h,得到镁橄榄石瓷。为改善镁橄榄石陶瓷的热膨胀性,实验探究了外加5~20%的β-锂霞石,对镁橄榄石瓷热膨胀系数的影响。通过对样品的X射线衍射分析和热膨胀测试,结果表明,添加一定比例的β-锂霞石能有效降低镁橄榄石瓷的热膨胀系数,当β-锂霞石含量达到20%时,在室温至800℃时测得镁橄榄石瓷的热膨胀系数随温度的升高而升高,最大热膨胀系数为8.071×10-6℃-1,相对于单纯的镁橄榄石瓷降低了26.2%。  相似文献   

19.
利用高温固相反应法制备A2W3O12(A∶Al,Sc,Y,下同)负熟膨胀材料,利用X射线衍射仪测定材科的晶体结构、晶胞参数及晶胞体积,结果表明:随A3+半径增大,A2W3O12的晶胞参数和晶胞体积增大.热膨胀系数测试结果表明:A2W3O12具有良好的负热膨胀性能,热膨胀系数绝对值随A3+半径增大而增大.以Sc2W3O1...  相似文献   

20.
采用溶胶-凝胶法制备出Ce0.8Y0.2-x Cax O2-δ(0.02≤x≤0.10)系列电解质材料。通过红外、热重、X射线衍射、扫描电子显微镜、透射电子显微镜、交流阻抗和热膨胀系数测试对试样进行分析。结果表明:采用溶胶-凝胶法经600℃煅烧所得粉体形成了单相立方萤石结构,平均晶粒尺寸在5~10nm之间;Ce0.8Y0.2-x Cax O2-δ超细粉体具有较高的烧结活性,在1 400℃烧结得到的Ce0.8Y0.2-x Cax O2-δ系列电解质陶瓷的相对密度均大于96%。在该系列材料中,Ce0.8Y0.1Ca0.1O1.85具有良好的离子导电率、较低的电导活化能和适中的热膨胀性能。它在800℃时的离子电导率为0.041S/cm,电导活化能为0.81eV,热膨胀系数为13.5×10-6 K-1(常温~800℃)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号