首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The corrosion behavior of a ferritic/martensitic steel P92 exposed to supercritical water (SCW) at 500–600 °C and 25 MPa was investigated by means of gravimetry, scanning electron microscope/energy dispersive X-ray spectroscopy and X-ray diffraction. A dual-layered oxide scale, which was mainly composed of an outer magnetite layer and an inner magnetite/spinel-mixed layer, formed on P92. The initial oxide scale was rather porous, while the porosity decreased with an increase of exposure time. Oxidation rates at three different temperatures followed the parabolic law. The oxidation at 600 °C was so severe that cracks occurred along grain boundaries in the oxide scale. A probable corrosion mechanism for P92 exposed in SCW was proposed based on the above observations, focusing on oxide formation by oxygen absorption without any metallic dissolution.  相似文献   

2.
Hierarchical bimodal macro-mesoporous zirconia oxide has been synthesized by a simple method in the presence of CTMABr surfactant. The synthesized zirconia having uniform macropores of 300–600 nm in diameter with wormhole-like mesoporous walls and high surface area was calcined at 400 and 600 °C and impregnated with 0.5 wt.% of palladium and compared with classical 0.5 wt.% Pd/ZrO2 catalyst for toluene oxidation. The highest activity of 0.5 wt.%/macro-mesoporous zirconia calcined at 600 °C was mainly explained by a rather high Pd dispersion and by H2-TPR measurements showing a higher quantity of PdO species easily reducible at 0 °C.  相似文献   

3.
Alkali metal-doped MoVSbO catalysts have been prepared by impregnation of a MoVSbO-mixed oxide (prepared previously by a hydrothermal synthesis) and finally activated at 500 or 600 °C in N2. The catalysts have been characterized and tested for the selective oxidation of propane and propylene. Alkali-doped catalysts improved in general the catalytic performance of MoVSbO, resulting more selective to acrylic acid and less selective to acetic acid than the corresponding alkali-free MoVSbO catalysts. However, the specific behaviour strongly depends on both the alkali metal added and/or the final activation temperature. At isoconversion conditions, catalysts activated at 600 °C present selectivity to acrylic acid higher than that achieved on those activated at 500 °C, both K-doped catalysts presenting the highest yield to acrylic acid. The changes in the number of acid sites as well as the nature of crystalline phases can explain the catalytic behaviour of alkali-doped MoVSbO catalysts.  相似文献   

4.
Carbon fibers and carbon/carbon composites have been treated with borate additives and then cured at 500–600°C to produce a continuous film of boron oxide on all exposed surfaces.This treatment has been found to be highly effective in retarding oxidation of the carbonaceous substrate for extended periods in flowing air at temperatures up to 1000°C. At higher temperatures, and in the presence of water vapor, borate species were appreciably volatile and the oxidation protection provided by the coatings was less effective.  相似文献   

5.
Mo–V–X (X = Nb, Sb and/or Te) mixed oxides have been prepared by hydrothermal synthesis and heat-treated in N2 at 450 °C or 600 °C for 2 h. The calcination temperature and the presence or absence of Nb determines the nature of crystalline phases in the catalyst. Nb-containing catalysts heat-treated at 450 °C are mostly amorphous solids, while Nb-free catalysts heat-treated at 450 °C and samples treated at 600 °C clearly contain crystalline phases. TPR-H2 experiments show higher H2-consumption on catalysts with amorphous phases. Catalytic results in the oxidative dehydrogenation of ethane indicate that the selective production of the olefin is strongly related to the development of the orthorhombic Te2M20O57 or (SbO)2M20O56 (M = Mo, V, Nb) phase (the so-called M1 phase), which is mainly formed at 600 °C. This active and selective crystalline phase is characterized to show moderate reducibility and active centers enough for the selective oxidative activation of ethane with the minimum quantity possible of active centers for ethylene activation. In this sense, the best yield to ethylene has been achieved on a Mo–V–Te–Nb mixed oxide.  相似文献   

6.
Sintered silicon carbide was brazed to itself by Ag–35.25 wt%Cu–1.75 wt%Ti filler alloy at 860 °C, 900 °C and 940 °C for 10 min, 30 min and 60 min. Mechanical properties both at room temperature and high temperature were measured by flexural strength. The interfacial microstructure was investigated by electron probe microanalysis (EPMA), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The experimental results indicate that increased brazing temperature heightens the flexural strength and the maximal four-point flexural strength reaches 342 MPa at room temperature. In addition longer holding times result in thicker reaction layer, which increases mismatch of coefficients of thermal expansion (CTE) between SiC substrate and reaction layer and finally leads to poor mechanical properties due to high residual stresses. High temperature flexural strength decreases with an increase of test temperature due to softening of the filler alloy. A reaction layer composed of TiC and Ti5Si3 was observed at the interface of SiC/filler alloy and there is a representative microstructure: SiC/continuous fine TiC layer/discontinuous coarse Ti5Si3 layer/filler alloy.  相似文献   

7.
Low loading sulfided rhodium catalysts supported on carbon nanotubes (CNTs) were prepared from RhCl3 by deposition–precipitation using hydrogen peroxide, followed by an exposure to hydrogen sulfide and an additional thermal treatment in the range from 400 °C to 900 °C. Hydrogen sulfide was generated online from hydrogen and sulfur vapor over molybdenum disulfide as catalyst. By elemental analysis, the Rh loading of the prepared catalysts was found to be 1.4–1.8 wt%. Morphology and composition of the resulting catalysts were characterized by X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), and X-ray photoelectron spectroscopy (XPS). Nanoparticles were found to be highly dispersed on the CNTs with an average diameter as small as 1.0 nm determined by TEM. Sintering occurred during heat treatments at 650 °C and 900 °C in helium, as evidenced by XRD, TEM, and XPS. The treatment with hydrogen sulfide significantly enhanced the activity of the supported rhodium catalysts for the oxygen reduction reaction (ORR) in hydrochloric acid, as determined by rotating disc electrode measurements. The sulfided catalyst annealed at 650 °C with a particle size of about 2.5 ± 1.0 nm showed the best performance for the ORR, which is discussed based on the presence of a more stable rhodium sulfide layer on the metallic rhodium particles.  相似文献   

8.
Boria effects on accelerated SiC oxidation kinetics were investigated by conducting thermogravimetric analysis on SiC substrates coated with sol-gel derived borosilicate glass isothermally exposed to dry O2 and argon at 800°C and 1200°C for 100 hours. Boria concentrations in the glass coatings were 0, 14-38, and 92-94 mol%, balance silica. Accelerated weight gain was observed for SiC exposures in dry O2 at 800°C when boria concentrations were ≥ 92 mol%, corroborated by oxide thickness ranging from 3.5 to 10 µm. The oxide thickness predicted for pure SiC exposed to these conditions in the absence of boria is 0.15 µm. Microstructural analysis of SiC surfaces after oxide removal revealed that boria etched the underlying SiC substrate. Oxidation exposures at 1200°C in dry O2 suppressed boria effects on accelerating SiC oxidation kinetics due to rapid boria volatilization coupled with the formation of a protective thermally grown silica scale. Accelerated weight gain or oxide growth did not occur with argon exposures at either temperature. A new mechanism for boria-accelerated SiC surface-reaction kinetics is presented based on evidence for boria etching of SiC.  相似文献   

9.
The structure of nanoporous carbon produced by chlorination of powdered boron carbide at 600, 800, 1000, 1300, 1500, and 1800 °C has been studied by scanning electron microscopy, X-ray diffraction analysis, helium pycnometry, and low-temperature adsorption of nitrogen. On the basis of the results obtained, suggestions are made concerning the type of organization of the nanoporous structure of these materials. The evolution of the structure of nanoporous carbon is analyzed in relation to the synthesis temperature of nanoporous carbon. It is shown that, as the chlorination temperature increases, the structure of nanoporous carbon becomes more perfect: it changes from paracrystalline to turbostratic. The specific surface area decreases from 2200 to 36 m2/g, the volume of micropores decreases from 0.93 to 0.01 cm3/g, and that of mesopores first increases from 0.15 cm3/g (600 °C) to 0.57 cm3/g (1000 °C) and then decreases to 0.19 cm3/g (1800 °C). The total pore volume decreases from 1.08 to 0.20 cm3/g.  相似文献   

10.
Vertically aligned multiwalled carbon nanotubes (MWNTs) were grown on silicon substrate at a low temperature (<520 °C) using microwave plasma-enhanced chemical vapor deposition (MPCVD). From the Raman spectra, it was found that the ID/IG ratio of MWNTs decreased after annealing, indicating that more graphenes were formed by the annealing process. Nevertheless, a strong Si signal was found in Raman spectra after annealing at a high-temperature (600 °C). From X-ray photoelectron spectroscopy (XPS) analysis it was observed that the ratio of the oxygen to carbon (O/C) signal intensity was from 0.15 to 1.88 for the increasing annealed temperatures of MWNTs, and a Si signal was found nearby the surface of MWNTs after annealing at 600 °C. Moreover, from the IV measurement, the less symmetric IV characteristic was found for the metal/MWNTs/metal (MIM) sandwich structure of unannealed MWNTs. After 300 °C annealing process, the positive current was increase and the negative current was decrease. It was conjectured that the MWNTs could obtain more graphenes structure by the 300 °C annealing process. Moreover, the IV trace of the sample annealed by 600 °C exhibited rapid current descent, indicating the oxygenated and partly silicided phenomena might cover outer graphite layer of MWNTs. The equivalent circuit for the MIM sandwich structure could be represented as two Schottky barrier diodes in a back-to-back configuration. From the data fitting, it was found that the Schottky barrier height (B0) decreased and the current density (J) increased from unannealing to 300 °C annealing temperature. However, the Schottky barrier height (B0) was increased from 300 to 600 °C annealing temperature. Comparison with the XPS, this may due to the oxygenated and partly silicided phenomenon on the surface of the MWNTs.  相似文献   

11.
In the present work, nano-crystalline Ce0.9Gd0.1O1.95 (GDC) powder has been successfully prepared by a novel sol–gel thermolysis method using a unique combination of urea and PVA. The gel precursor obtained during the process was calcined at 400 and 600 °C for 2 h. A range of analyzing techniques including XRD, TGA, BET, SEM, EDS and TEM were employed to characterize the physical and chemical properties of obtained powders. GDC gel precursors calcined at 400 and 600 °C were found to have an average crystallite size of 10 and 19 nm, respectively. From the result of XRD patterns, we found that well-crystalline cubic fluorite structure GDC was obtained by calcining the precursor gel at 400 and 600 °C. It has been also found that the sintered samples with lower temperature calcined powder showed better sinterability as well as higher ionic conductivity of 2.21 × 10−2 S cm−1 at 700 °C in air.  相似文献   

12.
Electrically conductive nitrogen-doped SiC ceramics were exposed to molten FLiNaK at 700 °C for 100, 200, and 500 h, and at 1000 °C for 100 h in Ar atmosphere. The SEM-EDX investigations of corroded samples showed that the main corrosion attack proceeds through the intergranular phase, where the fluoride melt interacts with the oxide phases and partly dissolves also the SiC grains. It was proved that N-doped SiC has good corrosion resistance against molten FLiNaK. After corrosion at 700 °C for 100, 200, and 500 h the corroded layer thicknesses were 85, 90, and 120 µm, respectively.  相似文献   

13.
The effect of the Ar or N2 sintering atmosphere on the oxidation behaviour of pressureless liquid-phase-sintered (PLPS) α-SiC was studied. PLPS α-SiC specimens processed under Ar or N2 atmospheres were isothermally oxidized at 1100–1450 °C in air for up to 500 h, and their oxidation kinetics, activation energy, and rate-controlling mechanisms were compared. It was found that, regardless of the sintering atmosphere, the oxidation is passive due to the formation of oxide scales. In addition, below 1350 °C the oxidation is protective, with a kinetics that follows initially the arctan-rate law and then the parabolic-rate law. However, from 1350 °C onwards the oxidation becomes only semi-protective, with a kinetics that obeys the arctan-rate law briefly and then the paralinear-rate law. Furthermore, the activation energies and rate-controlling mechanisms are similar for the arctan and paralinear oxidations, but different for the parabolic oxidation. It was also observed that the N2-processed material oxidizes more slowly than the Ar-processed material below 1200 °C due to a greater crystallization of its oxide scale, whereas above 1200 °C the Ar-processed material is more oxidation-resistant due to greater viscosity of its oxide liquid. Implications concerning the optimization of the processing route of PLPS SiC for high-temperature applications in air are discussed.  相似文献   

14.
Spray drying and carbothermal method was employed to investigate reaction mechanism and electrochemical performance of LiFePO4/C cathode by using different carbon sources. Micro-structural variations of LiFePO4/C precursors using different carbon sources were studied by Thermo-gravimetric (TG)/Differential Thermal Analysis (DTA). The LiFePO4/C samples were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) absorption spectroscopy. The results indicated that the crystallization temperature of LiFePO4 was 453 °C, while the transform temperature was 539 °C from Li3Fe2(PO4)3 to LiFePO4. At 840 °C, LiFePO4/C sample with an excess of impurity phase Fe2P gave much poorer electrochemical performance. The severe decomposition of LiFePO4/C happened at 938 °C and generated impurity phases Li4P2O7 and Fe2P. The clear discharge platform of Fe2P emerged at around 2.2 V.  相似文献   

15.
When the perovskites are calcined at 750 °C, the incorporation of Pd into LaMnO3 enhances the activity of the catalyst in methane combustion at temperatures below 750 °C upon substitution of 0.1 mol La with Pd, and at temperatures below 600 °C when Pd is substituted for 0.1–0.15 mol Mn. Monolith catalysts based on La1−xPdxMnO3 (x = 0.1, 0.15) display a higher activity in methane combustion than do LaMn1−xPdxO3-based catalysts, which is due to the higher Pd/(Pd + Mn + La) ratio. The activities of the two perovskite types increase when calcination temperature is raised from 650 to 800 °C. With the increase in calcination temperature, an increase in the Pd content and a decrease in the La content is observed on the surfaces (X-ray photoelectron spectroscopy (XPS)). The rise in the temperature of perovskite calcination to 850 °C produces sintering which leads to the lowering in both the Pd content on the surfaces and the specific surface areas (SSAs) of the perovskites and, consequently, decreases catalytic activity.  相似文献   

16.
Impregnation and reaction of glycerol (Gly) on the surface of expanded vermiculite (EV) was used to produce a highly efficient absorbent to remove water spilled oils. The vermiculite was impregnated by glycerol containing 1, 2 and 4 mol% of H2SO4 at EV/Gly ratios, i.e. 1/1, 1/2 and 1/3, and heated to 380, 580 and 750 °C. SEM, TG, BET specific surface area, and Raman analyses indicated that glycerol at 380 °C forms a polymer layer. At higher temperatures, the polymer decomposed to form porous carbon covering the EV surface. These materials were investigated for the removal of three different oils, i.e. diesel, soybean and engine oil spilled on water. The obtained results showed a remarkable increase on oil removal of 600% compared to the non-modified EV.  相似文献   

17.
Ivan C. Lee   《Catalysis Today》2008,136(3-4):258
Autothermal reformation of military jet fuel (1096 ppmw sulfur) was investigated with rhodium supported on thermally stabilized Y zeolite catalysts. The zeolite catalysts were thermally stabilized by ion exchanging with nitrate solutions of rare-earth metals (La, Ce, Sm, Gd, Dy and Er). Surface area analyses indicated that the exchanged zeolite could maintain its porous structure as high as 950 °C instead of 800 °C for a commercial NaY zeolite. The structure of the exchanged zeolite was characterized by X-ray diffraction (XRD). Rh-SmNaY zeolite reforming catalysts were prepared by incipient wetness and organometallic synthesis. The JP8 reforming experiments were performed in a short contact time adiabatic reactor with a monolithic catalyst with the addition of air and steam at a temperature below 920 °C. The effects of steam and fuel-to-air ratio (C/O ratio) were studied. Hydrogen and carbon monoxide were produced as the main products. Durability tests were performed with Rh/SmNaY-zeolite catalysts. This work shows that zeolite based catalysts can convert transportation fuels such as high sulfur jet fuel (over 1000 ppmw S) to syngas for solid oxide fuel cell applications.  相似文献   

18.
Thermal behaviour of synthetic Cu–Mg–Mn and Ni–Mg–Mn layered double hydroxides (LDHs) with MII/Mg/Mn molar ratio of 1:1:1 was studied in the temperature range 200–1100 °C by thermal analysis (TG/DTA/EGA), powder X-ray diffraction (XRD), Raman spectroscopy, and voltammetry of microparticles. Powder XRD patterns of prepared LDHs showed characteristic hydrotalcite-like phases, but further phases were indirectly found as admixtures. The Cu–Mg–Mn precipitate was decomposed at temperatures up to ca. 200 °C to form an XRD-amorphous mixture of oxides. The crystallization of CuO (tenorite) and a spinel type mixed oxide of varying composition CuxMgyMnzO4 with Mn4+ was detected at 300–500 °C. At high temperatures (900–1000 °C), tenorite disappeared and a consecutive crystallization of 2CuO·MgO (gueggonite) was observed. The high-temperature transformation of oxide phases led to a formation of CuI oxides accompanied by oxygen evolution. The DTA curve of Ni–Mg–Mn sample exhibited two endothermic effects characteristic for hydrotalcite-like compounds. The first one with minimum at 190 °C can be ascribed to a loss of interlayer water, the second one with minimum at 305 °C to the sample decomposition. Heating of the Ni–Mg–Mn sample at 300 °C led to the onset of crystallization of oxide phases identified as NixMgyMnzO4 spinel, (Ni,Mg)O oxide containing Mn4+ cations, and easily reducible XRD-amorphous species, probably free MnIII,IV oxides. At 600 °C (Raman spectroscopy) and 700 °C (XRD), the (Ni,Mg)6MnO8 oxide with murdochite structure together with spinel phase were detected. Only spinel and (Ni,Mg)O were found after heating at 900 °C and higher temperatures. Temperature-programmed reduction (TPR) profiles of calcined Cu–Mg–Mn samples exhibited a single reduction peak with maximum around 250 °C. The highest H2 consumption was observed for the sample calcined at 800 °C. The reduction of Ni–Mg–Mn samples proceeded by a more complex way and the TPR profiles reflected the phase composition changing depending on the calcination temperature.  相似文献   

19.
The synthesis of higher alcohols from syngas has been studied over different types of Cu-based catalysts. In order to provide control over the catalyst composition at the scale of a few nanometers, we have synthesized two sets of Co–Cu nanoparticles with novel structures by wet chemical methods, namely, (a) cobalt core–copper shell (Co@Cu) and (b) cobalt–copper mixed (synthesized by simultaneous reduction of metal precursors) nanoparticles. These catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and temperature programmed reduction (TPR). The catalysts were tested for CO hydrogenation at temperatures ranging from 230 °C to 300 °C, 20 bar and 18,000 scc/(hr.gcat). It was observed that the Co–Cu mixed nanoparticles with higher Cu concentration exhibit a greater selectivity towards ethanol and C2+ oxygenates. The highest ethanol selectivity achieved was 11.4% with corresponding methane selectivity of 17.2% at 270 °C and 20 bar.  相似文献   

20.
A precursor for reaction-bonded mullite (RBM) is formulated by premixing Al2O3, Si, mullite seeds and mixed-rare-earth-oxides (MREO). An ethanol suspension thereof is stabilized with polyethyleneimine protonated by acetic acid. The solid in the suspension is infiltrated into unidirectional mullite/alumina fiber-preforms by electrophoretic infiltration deposition to produce fiber-reinforced, RBM green bodies. Crack-free composites with ≤25% porosity were achieved after pressureless sintering at 1300 °C. Pre-coating the fibers with AlPO4 as a weak intervening layer facilitates significant fiber pullout on composite fracture and confers superior damage tolerance. The bend strength is 170 MPa at 25 °C ≤ T ≤ 1100 °C. At 1200 °C, the composite fails in shear due to MREO-based, glassy phase formation. However, the AlPO4 coating acts as a weak layer even after thermal aging at 1300 °C for 100 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号