首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 390 毫秒
1.
对以槟榔渣为原料、采用一步化学炭活化法制备活性炭的工艺进行了研究。结果表明,活化剂的种类和浓度、活化剂溶液与槟榔渣的液固比(质量比,下同)、活化时间及活化温度等对产品性能及收率都有一定的影响,通过实验确定了最佳工艺条件为:ZnCl2作活化剂,ZnCl2溶液的质量分数为25%~30%,ZnCl2溶液与槟榔渣的液固比为5:1,炭活化温度为550~600℃,炭活化时间为4.5—5.0h。按此工艺条件制备的活性炭,产品收率达37%以上,活性炭性能优良。亚甲基蓝吸附值达280mg/g左右。  相似文献   

2.
高比表面积煤基活性炭的制备及其吸附性能的研究   总被引:2,自引:0,他引:2  
以太西无烟煤为原料,KOH为活化剂,采用化学活化法制备高比表面积煤基活性炭,着重考察了碱炭比、活化温度、活化时间对活性炭吸附性能的影响。研究结果表明:当碱炭比为4、活化温度为800℃、活化时间为1h时,可以制得比表面积达3215m^2/g,碘吸附值达2884mg/g,亚甲蓝吸附值达548mg/g的高比表面积煤基活性炭。  相似文献   

3.
《化工科技》2021,29(1)
采用物理化学活化法处理干熄兰炭进一步制备活性炭,探究了活化剂选择、碱炭比、活化温度、活化时间对活性炭吸附维生素B_(12)溶液的影响,并且对最优条件下制备的活性炭进行SEM、BET、FIIR分析。研究表明,对比不同活化剂(ZnCl_2、H_3PO_4、KOH)饱和溶液浸渍后得到的活性炭吸附维生素B_(12)吸附量,KOH活化制备活性炭的吸附量远大于ZnCl_2和H_3PO_4,当采用饱和KOH溶液浸渍,m(碱)∶m(炭)=3∶1、活化温度为880℃、活化时间为110 min时制备的活性炭对维生素B_(12)溶液的吸附量最大,可达57.5 mg/g,其BET比表面积为1 157.2 m~2/g。经扫描电镜和孔径分布分析其微孔和中孔最为丰富,通过红外光谱可知最优条件下制备的活性炭的表面有—OH、CO、—COOH、C—H等基团,可为榆林干熄兰炭作为吸附材料的利用提供新的思路。  相似文献   

4.
NaOH活化法制备煤基活性炭的研究   总被引:2,自引:0,他引:2  
以焦作无烟煤为原料,NaOH为活化剂,采用化学活化法制备煤基活性炭,分别考察了碱炭比、活化温度和活化时间等工艺参数对活性炭吸附性能和收率的影响;利用低温N2吸附法对活性炭的比表面积、总孔容及孔径分布进行了表征.结果表明,在碱炭比为4,活化温度为750℃和活化时间为1 h的条件下,可以制得比表面积为2 483 m2/g,总孔容为1.41 cm3/g,碘吸附值为2 530 mg/g,亚甲蓝吸附值为418 mg/g的煤基活性炭.  相似文献   

5.
以酚醛树指为原料,氢氧化钾为活化剂,制备酚醛树脂基超高比表面积活性炭。采用正交实验考查了制备工艺中炭化温度,碱炭比,活化温度和活化时间对活性炭吸附性能的影响,确定了超高比表面积活性炭的制备最佳工艺。利用TG—DTA对热解过程中树脂的炭化活化行为进行了探讨;通过N2-BET对活性炭比表面积和孔结构进行了表征,并简单分析了成孔机理。结果表明:炭化温度400℃,碱炭比为5:1,活化温度为750℃,活化时间为100min时,制备的酚醛树脂基活性炭比表面积为3013m^2·g^-1,孔容1.609ml/g,平均孔径2.135nm,亚甲基蓝吸附值为592mg·g^-1。  相似文献   

6.
以武钢焦化公司焦油渣为原料,KOH为活化剂,采用正交实验研究了活化温度、活化时间、碱炭比(氢氧化钾与焦化除尘灰的质量比)和炭化温度对所制活性炭吸附性能的影响,得出制备焦油渣基活性炭影响因素主次顺序为活化温度、活化时间、碱炭比、炭化温度,最佳活化条件为活化温度为800℃,活化时间为100min,碱炭比为4:1,炭化温度为400℃。在此条件下制备活性炭的碘吸附值为1300.765mg/g。  相似文献   

7.
以废弃的辣椒秸秆为原料,KOH为活化剂,制备高比表面积活性炭,研究了碱炭比、活化温度、炭化温度及活化时间对活性炭吸附性能的影响。结果表明,活性炭制备的最佳工艺条件为:碱炭比为3∶1,活化温度为700℃,炭化温度为450℃,活化时间为40 min。在此条件下,制得的活性炭碘吸附值2 356.40 mg/g,亚甲基蓝吸附值41.3 mL/0.1 g,BET比表面积为2 432.135 m2/g,Langmuir比表面积高达3 270.478 m2/g,吸附总孔容为2.064 cm3/g,平均孔径为3.246 nm。SEM和XRD观察发现,辣椒秆活性炭呈不定形态,具有丰富和发达的蜂窝状孔隙结构。  相似文献   

8.
制备条件对超高比表面积活性炭结构的影响   总被引:3,自引:0,他引:3  
以石油焦为炭前驱材料、用不同试剂作为活化剂,讨论了不同活化剂对石油焦的活化作用。在以KOH为活化剂时,研究了活化条件对活性炭孔结构的影响。结果表明,强碱具有明显的活化作用,盐类试荆的活化作用很差,且KOH的活化作用远优于NaOH。在碱与碳质量比为4、800℃下活化60min制得了BET比表面积为3422m^2/g的超高比表面积活性炭(SBET≥2500m^2/g)。且碱与碳质量比越大、活化温度越高及活化时间越长,所制得活性炭中大于2nm的孔所占的比例越大。  相似文献   

9.
对一商用活性炭依次使用H3PO4和NaHCO3联合活化制备适用于铅炭超级电池用活性炭材料,该材料在较浓硫酸体系下具有较高的比电容较和良好的稳定性.利用SEM、XRD和FTIR分别对活性炭表面形貌、微晶结构和表面官能团结构进行分析,通过循环伏安、恒流充放电等方法研究活性炭的电化学性能.结果表明,经过联合活化的活性炭在1.0A/g电流密度、4.8mol/L硫酸溶液条件下稳定放电电容高达224.9F/g,比电容保持率达到86.5%.将联合活化制得的活性炭添加到铅酸电池负极中,其在高倍率部分荷电状态下循环性能有明显提高.  相似文献   

10.
用褐煤活化一步法制备活性炭的研究   总被引:1,自引:0,他引:1  
介绍了以褐煤为原料,磷酸为活化剂,硫酸为添加剂,采用炭活化一步法制备活性炭的实验,讨论了浸渍温度、炭活化温度、炭活化时间、磷酸的浓度、磷酸溶液与褐煤的液固比、硫酸的用量等主要因素对活性炭性能的影响。结果表明,适宜的工艺条件为:浸渍温度为80℃,炭活化温度为400℃,炭活化时间为60min,磷酸质量分数为40%,磷酸溶液与褐煤的液固比为5:1,硫酸的用量为褐煤质量6%。在该适宜的工艺条件下制备的活性炭,强度为88.2%,比表面积为1 158.6 m2/g,吸碘值为946.5 mg/g,吸亚甲基蓝值为203.4mg/g。  相似文献   

11.
方晶 《江西化工》2014,(1):97-101
将MnNO3填充在有序介孔碳CMK-8孔道中,然后在氨气气氛中烧结合成了Mn3N2/CMK-8复合材料。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线衍射(XRD)对其结构和微观形貌进行了表征。利用充放电测试考察了复合材料作为锂离子电池负极材料的性能。发现Mn3N2分布在CMK-8孔道中及其周围,复合材料的充放电性能显著优于Mn3N2,复合材料中Mn3N2的比容量明显高于无CMK-8的样品(在恒电流为100mA/g时,比容量为480 mAh·g-1),循环20次的容量损失率只有0.62%。本研究结果表明CMK-8明显提高了Mn3N2的充放电性能,可能是CMK-8特殊的孔道结构和良好的导电性减小了Mn3N2的粒径并提高了其电导率。  相似文献   

12.
利用喜旱莲子草制备活性炭,选择了活化剂、活化剂浓度、碳化时间、碳化温度等作为实验的四个因素,每个因素选取三个水平,采用正交实验法,得出了最佳制备条件:以2 mol/L的H3PO4作为活化剂,碳化温度400℃,碳化时间1 h。比较了不同时间、不同活性炭用量、不同温度下,喜旱莲子草基活性炭对苯酚的吸附效果。此外,动态吸附实验表明:提高活性炭用量(即增加填料高度),降低进水苯酚浓度以及减小进水流量均能相应延长喜旱莲子草基活性炭去除苯酚到达穿透点的时间,从而增加最大吸附容量。  相似文献   

13.
冯倩  徐荣声  李梅  张海永 《无机盐工业》2021,53(12):122-128
含有亚甲基蓝(MB)的废液直接排放会造成严重的水体污染。为研究生物质活性炭对MB的吸附性能,以农业废弃物向日葵为原料、磷酸(H3PO4)为活化剂,制备粉状活性炭(PAC)和块状活性炭(BAC),并研究PAC对MB的吸附性能。利用比表面积测试(BET)、X射线光电子能谱(XPS)、X射线衍射(XRD)、红外光谱(FT-IR)和扫描电镜(SEM)等方法解析活性炭的孔结构和表面特性。结果表明:活性炭前驱体的形状对活性炭的微观结构有较大的影响。PAC比BAC具有更大的比表面积(分别为701.95 m2/g和566.49 m2/g)和总孔体积(分别为2.23 cm3/g和1.04 cm3/g);PAC和BAC的平均孔径分别为7.31 nm和12.66 nm,均具有介孔材料的结构特性。两种活性炭表面均分布着丰富的含氧官能团和大量疏松的无定形碳,而存在的偏磷酸盐对孔隙起到支撑作用,这为MB的吸附提供了更多的活性位点和吸附通道。在25 ℃、pH为8、PAC用量为50 mg条件下,PAC对100 mL质量浓度为200 mg/L的MB溶液的吸附效果最好,吸附率达到72.2%。吸附过程符合伪二级动力学模型、颗粒内扩散模型和Langmuir等温吸附模型。  相似文献   

14.
KOH活化法制备有机双电层电容器用高比表面积活性炭   总被引:1,自引:0,他引:1  
以石油焦为原料、KOH为活化剂制备有机双电层电容器用高比表面积活性炭。考察了活化剂与石油焦的质量比(碱炭比R)对活性炭的孔结构及其比电容的影响,研究结果表明:增大活化剂用量可制得中孔含量丰富的高比表面积活性炭,碱炭比为5时所制活性炭的比表面积和总孔容分别为2646m^2/g和1.66cm^2/g,中孔率高达53.6%,以该活性炭作电极组装成的双电层电容器在1mol/L LiPF6(EC+DMC+EMC)有机电解液中的比电容可达173F/g,同时具有良好的充放电性能和功率特性。  相似文献   

15.
以我国产量较大的山东淄博高硫石油焦为原料,利用KOH活化法,于800℃下通过改变碱焦质量比(质量比为1∶1,2∶1,3∶1,4∶1)制备得到不同比表面积的高硫石油焦基活性炭(AC-PC-X),利用比表面积分析仪对其孔结构进行了分析,并进一步利用水热法担载Mn3O4制备得到AC-PC-X/Mn3O4复合材料,分别将AC-PC-X/Mn3O4和高硫石油焦基活性炭作为二次电池负极材料分别应用于锂离子电池和钾离子电池中,利用JSM-7001F型热场发射扫描电子显微镜和JEM-2100F型场发射透射电子显微镜观察了负极材料的微观形貌,以及利用LAND CT2001A型电池测试系统和CHI660D型电化学工作站考察了负极材料的性能。结果表明:不同碱焦质量比条件下制备得到的高硫石油焦基活性炭均以微孔结构为主,比表面积随碱焦质量比的增加而增大;碱焦质量比为3∶1时制备得到的高硫石油焦基活性炭(AC-PC-3,比表面积为996m2/g)表现出最佳的长期循环稳定性,比表面积过大或过小的高硫石油焦基活性炭的电化学稳定性均不如ACPC-3的电化学稳定性。在锂离子电池中,AC-PC-3/Mn3O4在初始循环中的比容量为907mAh/g,但其循环容量衰减较慢,120次充/放电循环后其稳定比容量为400mAh/g;在钾离子电池中,ACPC-3在500次循环后比容量几乎没有衰减,稳定在95mAh/g。  相似文献   

16.
通过水热法合成了NiFe2O4/Graphene纳米复合材料,采用XRD和SEM对其晶相结构和形貌进行了表征,并将其作为锂离子电池活性材料组装成模拟电池,考查电化学性能。结果表明NiFe2O4/Graphene复合材料在100mA/g的电流密度下首次放电容量达970mAh/g,循环20次后,容量保持在668mAh/g,相比纯的NiFe2O4,具有较好的循环稳定性,这种优异的电化学性能归因于复合材料的纳米结构和NiFe2O4与Graphene的协同作用。  相似文献   

17.
采用浸渍法在活性炭上负载铁制备催化剂Fe/AC,用于催化臭氧氧化水中内分泌干扰物双酚A(BPA),研究了Fe/AC/O3体系的协同效应,探讨了Fe/AC投加浓度、臭氧浓度和BPA初始浓度等工艺参数的作用规律,并分析了Fe/AC/O3体系在不同pH值下的催化反应机制。结果表明,在Fe/AC/O3体系下,反应60 min后,BPA和COD的去除率分别为97.44%和69.47%,效果明显优于臭氧体系的70.15%、30.89%和活性炭体系的14.69%、7.53%之和,具有明显的协同作用;Fe/AC/O3体系降解BPA符合一级反应动力学,当Fe/AC的投加浓度为5.0 g/L,臭氧浓度为15.0 mg/L,BPA初始浓度为50.0 mg/L时,Fe/AC/O3体系降解BPA的反应速率常数为0.05972 min-1;其反应机制受溶液pH值的影响,在酸性条件下是吸附和臭氧直接氧化共同作用,而在碱性条件下以·OH间接氧化为主,活性炭上负载的Fe3+促进了·OH的生成,大大提高了BPA的反应效率和矿化率。  相似文献   

18.
以活性炭为模板、五水四氯化锡和六水硝酸钴为原料,制备纯相的多孔锡酸钴(CoSnO3)阻燃剂,通过X射线衍射(XRD)和扫描电镜(SEM)对其结构、形貌进行表征,并将其应用于PVC的阻燃研究中。当CoSnO3的添加量为15份时,其极限氧指数(LOI)达到35.6%、烟密度等级(SDR)为75.2%、断裂伸长率为168.32%、拉伸强度为 22.50 MPa。通过热重分析(TGA)对阻燃前后PVC的热降解行为进行了初步探讨,研究发现: 经CoSnO3阻燃处理后,PVC样品的初始降解温度降低,高温时的剩炭量增加,表明CoSnO3对PVC材料具有较好的阻燃消烟性能。  相似文献   

19.
采用湿式过氧化物氧化技术(WPO)处理苯酚丙酮装置产生的高浓度有毒有机废水,并在WPO的基础上投加活性炭,加强催化氧化效果。通过单因素实验确定反应温度160℃,反应时间1h,进水pH值为3.0,H_2O_2投送加量控制在H_2O_2/COD=0.5,FeSO_4按照n_(Fe~2+)/n_(H_2O_2)=0.1的比例投加,在活性炭催化作用的强化下,COD和苯酚的去除率分别可以达到90%和99%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号