首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
《中国化工》2008,(5):67-67
近日,海洋化工研究院合成了一种含氟硅的超低表面能丙烯酸树脂,利用该树脂制备的清漆涂层表面水接触角可达120°以上,具有优异的憎水效果;将该树脂配制成色漆,喷涂制得的涂层表面具有超疏水效果,水接触角达到150°以上,滚动角小于10°。当水滴接触到该涂料表面时,会因为涂层的憎水作用而滑落,使涂层表面不存留水分,起到防冰作用。该技术突破了以往超疏水涂层施工工艺复杂、强度差等缺陷,采用普通的高压空气喷涂,真正满足了大面积施工的要求,涂层机械性能优良。  相似文献   

2.
徐兵兵  黄月文  王斌 《精细化工》2019,36(10):2009-2015
为了提高基体材料的防污能力,在基体表面制备了一种无氟超疏水复合涂层。首先,使用十六烷基三甲氧基硅烷(HDTMS)对二氧化硅(SiO_2)微纳米颗粒进行疏水改性,其次,将改性后的SiO_2颗粒与有机硅烷混合,利用硅烷的水解、聚合在基体材料的表面得到一层稳定的无氟超疏水复合涂层。采用FTIR、TGA、SEM、AFM和接触角测量仪对涂层的化学组成、表面微观结构和疏水性能进行表征。结果表明:复合涂层表面具有微纳米尺度的粗糙结构,并具有优异的自清洁性和耐磨损性;未磨损前接触角达151°,磨损100周次后接触角进一步提高至161°。  相似文献   

3.
杨硕  张文梦  陈栋阳 《精细化工》2021,38(4):749-756
以聚二甲基硅氧烷(PDMS)和纳米SiO2掺杂聚芴醚酮(PFEK),采用溶液喷涂法在纸张表面构筑了耐用的超疏水涂层.考察了PDMS和SiO2用量(以PFEK和N-甲基吡咯烷酮的质量为基准,下同)对纸张水接触角的影响.结果表明,当PDMS和SiO2用量均为2%时,纸张表面的水接触角达到最大值170?,滚动角最小值为1?,聚合物将SiO2固定在纸张纤维上,使其表面呈现微纳米粗糙结构.超疏水性源于这种疏水粗糙表面下积蓄的空气对液滴浸润的抑制.制得的PFEK/PDMS/SiO2喷涂纸经过40个摩擦周期或12次对折测试后,其水接触角仍达到150°以上,能够维持超疏水性能,并具有较好的机械稳定性.拉伸测试表明,涂层将普通纸张的拉伸强度从10.1 MPa增强到37.8 MPa,在水中浸泡15 min后,该喷涂纸的拉伸强度为25 MPa,仍具有较好的力学性能.另外,PFEK/PDMS/SiO2喷涂纸能够抵抗黏稠泥土的污染,表现良好的自清洁性能.  相似文献   

4.
黄琨  王德辉  邓旭 《橡胶科技》2019,17(7):0376-0382
介绍利用硅橡胶制备可喷涂透明超双疏涂层材料的新方法。收集废旧硅橡胶煅烧产生的二氧化硅(SiO_2)聚集体并氟化改性,将其加入溶剂后形成的悬浮液喷涂在固体基板上即可得到透明的超双疏涂层。通过扫描电子显微镜对SiO_2聚集体及涂层表面的微观形貌进行分析。利用接触角测量仪测试液滴在涂层表面的接触角和滚动角。使用高速相机观察液滴在涂层表面的撞击行为。结果表明,在800℃的煅烧温度、5℃·min~(-1)的升温速率下煅烧3~4 h制得的SiO_2聚集体非常疏松和粗糙,形成多孔的交织网状结构。将改性SiO_2聚集体悬浮液喷涂在固体基材上,干燥后得到接触角大于150°、滚动角小于1°、透明性良好的超双疏表面。该超双疏涂层材料制备及使用方法简单,易于储存和运输,溶剂既便宜又环境友善,而且对废旧硅橡胶进行了有效的循环再利用,在工业领域上具有广阔的应用前景。  相似文献   

5.
罗帅帅  古卫乐  操未青  刘雷鹏  胡攀  田键 《精细化工》2023,40(8):1727-1733+1741
利用硬脂酸钠(NaSt)和油酸钠(NaOL)对文石型和方解石型两种CaCO3粉体进行表面改性,将改性的CaCO3粉体与聚二甲基硅氧烷(PDMS)共混,喷涂得到了CaCO3/PDMS基超疏水涂层。采用XRD、SEM、接触角测量仪对改性CaCO3粉体及超疏水涂层进行测试,考察了不同晶型CaCO3用量对涂层疏水性能的影响,并对超疏水涂层的自清洁性及稳定性进行了评价。结果表明,当NaSt和NaOL用量分别为反应体系CaCO3理论生成质量的5%时,CaCO3粉体改性效果最好,所制备的CaCO3/PDMS涂层疏水性最佳。当CaCO3和PDMS质量比为1.5∶1时,CaCO3/PDMS涂层接触角>150°,具有超疏水性。玻璃板涂层表面的亚甲基蓝污染物可以完全随着液滴被冲走,没有残留,且经过500 m L流速5 m/s的水流冲击,接触角仍达140°以上。  相似文献   

6.
采用树脂粘接法,将硬脂酸修饰后的粉煤灰用环氧树脂粘接在不锈钢网骨架表面,制备了超疏水不锈钢网,并对其进行了TEM、SEM、FTIR和接触角等表征。结果显示,在高倍显微镜下改性后的超疏水不锈钢网表面呈一定粗糙度的微纳米分级结构,静态水接触角高达153°。此外,该超疏水不锈钢网具有良好的机械稳定性和超疏水耐久性,其表面经机械磨损100次后水静态接触角仍高达141°。该材料用于多种油/有机溶剂与水混合液的分离中,分离效率均高于94%。  相似文献   

7.
通过在基材表面喷涂环氧树脂作为黏合剂,然后喷涂炭黑纳米粒子、聚二甲基硅氧烷(PDMS)以及十七氟癸基三乙氧基硅烷(PFDTES)的共混液制备了一种炭黑/PDMS光热超疏水涂层.炭黑纳米粒子提供光热性能并使涂层具有微纳粗糙结构,结合PFDTES较低的表面能使涂层获得超疏水性能.制备涂层表面的水滴接触角高达161?,滚动角低至1.4?,呈现优异的超疏水性能,从而使水滴在玻璃表面结冰的时间由30 s延迟到160 s.涂层中炭黑所提供的光热转换效应使其表面的冰在太阳光照射下能迅速融化,并随自重自动脱落.此外,涂层的自清洁性能可防止表面在户外应用时遭受污染,有利于保护涂层的光热转换性能和长期光热除冰功能.  相似文献   

8.
针对常规超疏水涂层制备工艺繁琐等问题,以介孔SiO2纳米颗粒(MCM-41)为填料和载体,聚二甲基硅氧烷(PDMS)为低表面能改性剂,环氧树脂及其固化剂为成膜物,采用喷涂法制备了超疏水涂层。通过场发射扫描电子显微镜、共聚焦显微镜、接触角测量仪、拉伸试验机对其表面形貌、结构、疏水性及附着力进行表征。重点考察了PDMS改性的MCM-41(MCM-41/PDMS)和树脂基体质量比对涂层性能的影响。结果表明:当MCM-41/PDMS质量分数为55%,可以得到涂层疏水性(接触角150°,滚动角9°)和附着力(7.33 MPa)的最佳匹配,涂层经过胶带剥离300次和磨损150周期后,水接触角仍大于150°。  相似文献   

9.
采用辊式涂布的方法在纸基材料上构建超疏水表面,并对超疏水表面的牢固性、自清洁性和疏水性能进行评价。用γ-氨丙基三乙氧基硅烷和1H,1H,2H,2H-全氟辛基三乙氧基硅烷(POTS)对微米级和纳米级两种尺寸的TiO2粒子进行疏水改性处理,然后将改性后的微/纳米TiO2涂布在纸基材料表面。采用红外光谱(FTIR)对改性后的微/纳米TiO2的化学组成进行了分析,采用扫描电镜(SEM)对涂布纸表面结构进行了表征,通过接触角、耐磨性和自洁净测试评价了涂层表面的超疏水性、牢固性和自清洁性。改性TiO2的FTIR分析显示在1000~1500cm-1之间出现多个C—F键的伸缩振动峰,表明POTS通过化学键与TiO2表面发生了结合。涂布纸表面的SEM分析可以看出,纸基材料表面上均匀分布了微米和纳米尺寸的TiO2颗粒,具备了类似荷叶表面微-纳结构的粗糙表面。涂层表面的水接触角为153°±1.5°,滚动角为3.5°±0.5°,水滴在涂层表面呈球形,极易滑落,涂层在水中浸泡7天后,接触角没有发生明显变化,表明纸张表面具备了优异的超疏水性能,且疏水稳定性较好。涂层表面经过10次循环磨损试验后,接触角仍能达到150°,滚动角为9°,表明机械摩擦没有对涂布纸表面的化学成分和粗糙结构造成明显的破坏,超疏水表面的牢固性较好。自洁净测试表明,涂布纸表面具有良好的自清洁和防污性能。该工艺过程操作简单,易于实现工业化生产,为在纸基表面构建综合性能优异的超疏水表面提供了一种新的便利途径。  相似文献   

10.
ZnO/聚二甲基硅氧烷超疏水薄膜的制备及其性能研究   总被引:1,自引:0,他引:1  
青勇权  郑燕升  何易  胡传波  莫倩 《塑料工业》2013,41(7):108-111,126
通过硬脂酸对ZnO粒子的改性,使其表面引入了疏水性的甲基,将改性后的ZnO粒子与低表面能物质聚二甲基氧烷经过混合陈化固化过程后,在钢片上形成聚二甲基硅氧烷/ZnO超疏水涂层。采用接触角分析仪、扫描电镜、红外光谱,表征涂层表面的形貌和疏水性。结果表明,改性后的ZnO粒子在聚合物上构造微/纳米双重粗糙结构表面,涂层表面具有优异的自清洁性,水的静态接触角达161°,滚动角5°。该方法简单有效有巨大的应用前景。  相似文献   

11.
The aim of this study is to fabricate a superhydrophobic antireflective (AR) coating that can be deposited on the covering of a solar cell system. First, AR coatings were synthesized on glass substrates with an average transmittance over 96% by layer-by-layer deposition of polyelectrolyte. Superhydrophobic sol gel was prepared by hydrolyzing tetraethoxysilane and then reacting it with hexamethyldisilazane. The sol gel, aged at 20°C for 96 h, was used to spin-coat a superhydrophobic film with a water contact angle of 163° and a transmittance of ~91%. The superhydrophobic sol gel was spin-coated on the top of an AR coating to form a superhydrophobic AR coating on a glass substrate. The average transmittance, advancing contact angle, and contact angle hysteresis of the superhydrophobic AR coating, which was spin-coated from sol gel aged for 96 h or 168 h, were 94.5 ± 0.7%, 154.0° ± 1.5°, and 15.4° ± 0.3° or 96.4 ± 0.2%, 158.4° ± 4.4°, and 1.8° ± 0.3°, respectively. Strategies for obtaining a superhydrophobic AR coating are discussed herein.  相似文献   

12.
Water repellent SiO2 particulate coatings were prepared by a one-step introduction of vinyl groups on the coating surface. Rough surface structure and low surface energy could be directly obtained. Vinyl functionalized SiO2 (vinyl-SiO2) spheres with average diameter of 500 nm were first synthesized by a sol–gel method in aqueous solution using vinyltriethoxysilane as the precursor. The multilayer SiO2 coating fabricated by dip-coating method was highly hydrophobic with a water contact angle of 145.7° ± 2.3°. The superhydrophobic SiO2 coating with a water contact angle up to 158° ± 1.7° was prepared by spraying an alcohol mixture suspension of the vinyl-SiO2 spheres on the glass substrate. In addition, the superhydrophobic SiO2 coating demonstrated good stability under the acidic condition. However, it lost its hydrophobicity above 200°C because of the oxidation and degradation of vinyl groups.  相似文献   

13.
In this paper, a facile, inexpensive, and environment-friendly method is developed to construct a superhydrophobic surface with hierarchical micro/nanostructures on the steel substrates. The superhydrophobic surface was fabricated by magnetic agitation of a mixture of micro and nanosized Zinc oxide (ZnO) suspensions on a substrate, after being modified with a low-surface energy monolayer of stearic acid, the as-prepared coating exhibits self-cleaning properties with a water contact angle of 162° and a sliding angle of 6°, and shows the good corrosion resistance. It is believed that the rapid and cheap technique have a promising future application for fabricating superhydrophobic surfaces on steel materials.  相似文献   

14.
This study introduces a relatively simple technique for the manufacture of superhydrophobic coatings on polymeric surfaces. Plastics such as unplasticized poly(vinyl chloride) (UPVC ) do not have a strong hydrophobic nature that is characterized by their low contact angles. Techniques of both increasing surface roughness and lowering surface energy are required to change their hydrophilicity to superhydrophobicity. In the present study, a coating of a low‐surface‐energy thermoplastic polyurethane (TPU ) was spin‐coated with chemically treated nanosilica to reduce the surface energy of UPVC . Nanosilica particles were embedded on the surface using a hot‐press. Taguchi design was used to optimize multiple processing parameters. Samples spin‐coated with 10 g L?1 nanosilica suspension in ethanol at a rate of 400 rpm for 5 s and then hot‐pressed at 155 °C under 2 atm (203 kPa ) for 4 min had a contact angle of ca 157° and sliding angle of ca 6°, which are characteristic of superhydrophobic surfaces. Atomic force microscopy (AFM) and scanning electron microscopy (SEM ) imaging showed that these superhydrophobic surfaces were highly rough with nanoscale features. Peel test and SEM analysis showed that silica nanoparticles embedded in the TPU coating were more stable than particles immobilized on UPVC sheet without TPU coating, proving that a layer of more flexible coating can improve the longevity of superhydrophobic surfaces manufactured using this facile method. © 2016 Society of Chemical Industry  相似文献   

15.
《Ceramics International》2022,48(16):23527-23535
Inspired by the surface structure of lotus leaves, micro–nano hierarchical surface structures have been widely used for designing superhydrophobic surfaces. However, the conventionally designed superhydrophobic surface structures are fragile. In this study, a layer of micron-sized mullite whiskers was grown using molten salt on the surface of BaAl2Si2O8 (BAS) glass ceramics. Subsquently, SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorodecyltriethoxysilane were sprayed onto the whisker layer to form a superhydrophobic surface. The nanoparticles exhibit superhydrophobicity, which is protected by the whisker layer containing pores and bulges. This prohibits direct contact between the nanoparticles and external objects. Contact and rolling angle tests indicated that the surface contact angle of the micro–nano hierarchical structure is 158° and the rolling angle is less than 10°. The stability of the superhydrophobic surface was tested through ultraviolet light, long-time immersion in solutions with various pH values, water scouring, and sandpaper abrasion. The results showed that the contact angle is greater than 150°. This study is expected to provide a simple and effective method for fabricating superhydrophobic surfaces on ceramics on a large scale.  相似文献   

16.
Preparation of superhydrophobic silica‐based films via sol‐gel process by adding polyethylene glycol (PEG4000) in the silica sol precursor solution has been developed. The casting films were prepared by casting the above solution on the glass and adding poor solvent on it or not. Surface roughness of the films was obtained by removing polymer from the films at high temperature. Then, the hydrophobic group on the surfaces was obtained by reaction with hexamethyldisilazane (HMDS). Characteristic properties of the as‐prepared surface of the films were analyzed by contact angle measurement, scanning electron microscopy (SEM), atomic force microscope (AFM), Fourier transform infrared (FT‐IR) spectrophotometer, and X‐ray photoelectron spectrometer (XPS). The results showed that the contact angles of the films were varied with the PEG weight fraction of the films, the solvent for the PEG solution, the reaction temperature and time, and adding poor solvent (n‐hexane) or not. However, the surface roughness has been controlled by adjusting the experimental parameters during the early period. The contact angle of the film that prepared by spraying the poor solvent (n‐hexane) onto each coating layer for four times after casting process was greater than 150°. It was difficult to obtain superhydrophobic surface without adding n‐hexane onto any coating layer in this system. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

17.
Fluoropolymer films were deposited on silicon (1 0 0) wafers, glass, epoxy, and hierarchical dual-sized filler epoxy composite surfaces by plasma polymerization of perfluorohexane, perfluoro(2-methylpent-2-ene), and perfluoro(4-methylpent-2-ene). The procedure involved continuous wave plasma-enhanced deposition, followed by a discharge-off period, with the monomer gas feed maintained. Silanization of silicon wafers and glass surfaces with triethoxyvinylsilane was employed to improve plasma fluoropolymer bonding to these substrates. The presence of double bonds in perfluoro(2-methylpent-2-ene) and perfluoro(4-methylpent-2-ene) was found to influence fluoropolymer coating topography, thereby increasing surface roughness in modified glass and epoxy substrates. All fluorocarbons provided a similar level of hydrophobization of flat substrates, exhibited by water contact angles (WCA) of about 110°. Hydrophobization of nanocomposite hierarchical surfaces by plasma polymerization provided superhydrophobic surfaces, with WCA of 160° and contact angle hysteresis below 8°.  相似文献   

18.
Effect of the coating method on the formation of superhydrophobic polydimethylsiloxane–urea copolymer (TPSC) surfaces, modified by the incorporation of hydrophobic fumed silica nanoparticles was investigated. Four different coating methods employed were: (i) layer-by-layer spin-coating of hydrophobic fumed silica dispersed in an organic solvent onto TPSC films, (ii) spin-coating of silica–polymer mixture onto a glass substrate, (iii) spray coating of silica/polymer mixture by an air-brush onto a glass substrate, and (iv) direct coating of silica–polymer mixture by a doctor blade onto a glass substrate. Influence of the coating method, composition of the polymer/silica mixture and the number of silica layers applied on the topography and wetting behavior of the surfaces were determined. Surfaces obtained were characterized by scanning electron microscopy (SEM), white light interferometry (WLI) and advancing and receding water contact angle measurements. It was demonstrated that superhydrophobic surfaces could be obtained by all methods. Surfaces obtained displayed hierarchical micro-nano structures and superhydrophobic behavior with static and advancing water contact angles well above 150° and fairly low contact angle hysteresis values.  相似文献   

19.
A lotus‐leaf‐like superhydrophobic low‐density polyethylene (LDPE) coating with low sliding angle was prepared by a facile method. The water contact angle and sliding angle of the as‐prepared superhydrophobic LDPE coating were 156 ± 1.7° and 1°, respectively. The anti‐icing property of the as‐prepared LDPE coating with low sliding angle was investigated in a climatic chamber with a working temperature of ?5°C. The results showed that the superhydrophobic LDPE coating with low sliding angle can largely prevent ice formation on the surface, showing excellent anti‐icing property. The as‐prepared superhydrophobic LDPE coating with good anti‐icing property will be perfectly desirable for outdoor equipments to reduce ice formation on their surfaces in cold seasons. This work will provide a new way to fabricate anti‐icing coating and thus find applications in a variety of fields. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

20.
A superhydrophobic coating was synthesized by in-situ reaction of fumed silica nanoparticles and a co-precursor which contains methyltrimethoxysilane (MTMS), propyltrimethoxysilane (PTMS), and diphenyldimethoxysilane (DPDS). The superhydrophobic surface was achieved by the spray of above mixtures on the substrates. Micro/nano structure of the surface was controlled by the silica nanoparticles. The wetting behavior of the surface was enhanced after coated and obtained a maximum 154o static water contact angle and a minimum 1o sliding angle. The surface retained its superhydrophobicity as well as good corrosive resistance and adhesion at a high temperature of 460?°C. Damage to the superhydrophobic coatings caused by extremely low temperature or mechanical force could be easily repaired through a heat treatment or a new spray.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号