首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
锂硫电池因其较高的理论比容量受到广泛关注,实验采用硫包覆改性磷酸铁锂,以期兼顾两者的优点。硫包覆改性处理的磷酸铁锂材料LFP-0.05S与初始磷酸铁锂材料LFP相比,形貌相近,均为100~300 nm一次颗粒。在碳酸酯类电解液和醚类电解液中,LFP的放电比容量均为160 mAh/g。在醚类电解液中,LFP-0.05S的放电比容量可以达到190 mAh/g,在3.4 V出现磷酸铁锂的放电平台,在2.4 V和2.1 V出现硫的放电平台。但是LFP-0.05S的循环稳定性较差,循环20圈后,容量保持率为74.9%。  相似文献   

2.
李珍珍 《山西化工》2023,(7):1-2+10
以黄磷所得副产品磷铁为原料,通过湿法溶解、除杂、结晶等工艺制备电池级磷酸铁,然后利用制备出的磷酸铁制备磷酸铁锂。制备电池级磷酸铁的最佳工艺参数为:硝酸浓度为3.0 mol/L、最佳反应温度为110℃、最佳反应时间为120 min、反应体系铁质量浓度为18.0 g/L,此时样品中铁含量与铁磷比接近理论值。LiFePO4/C样品首次充电容量、放电容量、放电的库伦效率分别为158.8 mAh/g、147.8 Ah/g、93.1%,说明磷酸铁锂电化学性能较好,能用于锂电池的正极材料。  相似文献   

3.
采用水热法制备出磷酸铁锂纳米片球/石墨烯(Li Fe PO_4/r GO)复合材料,使用XRD和扫描电镜(SEM)对复合材料进行了表征,并测试了其电化学性能。结果表明,LiFePO_4/rGO复合材料具有优异的电化学性能,其比容量达到154.4mAh·g~(-1),在5C倍率下循环50圈容量保持率为94.2%。  相似文献   

4.
前驱体磷酸铁的制备及其对磷酸铁锂电化学性能的影响   总被引:1,自引:0,他引:1  
以Fe3+为铁源,采用均相沉淀法制备前驱体磷酸铁,通过碳热还原法制得磷酸铁锂正极材料,研究其电化学性能。结果表明,以优化条件下所得磷酸铁为前驱体制备的磷酸铁锂,在0.1 C充放电倍率下,其首轮放电比容量达154 mA.h/g,充电比容量为156 mA.h/g,首轮充放电效率达98.9%,循环倍率性能优良。  相似文献   

5.
共沉淀法合成磷酸铁锂掺碳复合正极材料   总被引:2,自引:0,他引:2  
采用共沉淀法合成了纯相橄榄石型磷酸铁锂(LiFePO4)和磷酸铁锂掺碳(LiFePO4/C)复合正极材料.利用X射线衍射(XRD)、原子吸收(AAS)、扫描电镜(SEM)、红外吸收(FT-IR)、振实密度测定等方法对其进行表征,并组装成电池研究其电化学性能.结果表明:HFePO4和LiFePO4/C具有单一的橄榄石型晶体结构,前者的振实密度可达1.58 g/cm2,LiFePO4/C振实密度有所降低,但充放电平台非常平稳.与纯相LiFePO4相比,LiFePO4/C具有更高的放电比容量和循环性能,室温下以0.05 C和0.1 C倍率电流充放电,首次放电比容量达到158.1,150.0 mA·k/g.充放电循环20次后放电比容量仍保持在154.2,137.2 mA·h/g.  相似文献   

6.
李小玉 《广东化工》2012,39(11):69-70,42
以柠檬酸作为分散剂,采用胶凝胶法制备锂离子电池正极材料磷酸铁锂,采用X射线衍射光谱法(XRD),扫描电子显微镜法(SEM)和电化学手段对目标材料进行了结构表征和性能测试。考察了碳改性过程中蔗糖加入量、后期煅烧时间及金属离子Zr4+掺杂改性对合成材料充放电性能的影响。结果表明,合成产物为橄榄石型磷酸亚铁锂,碳改性和Zr4+离子能有效控制颗粒长大,提升材料的电化学性能;加入60%蔗糖,掺杂锆离子,650℃烧结18 h制备的磷酸亚铁锂的可逆性好,0.2C放电比容量达到162 mAh·g-1。  相似文献   

7.
本文设计合成了一种类沸石咪唑酯骨架衍生二维碳纳米片,并将其作为锂硫电池正极材料,测试电化学性能。产物采用扫描电子显微镜(SEM)、X射线衍射(XRD)、N_2等温吸附脱附曲线、以及热重分析(TGA)进行表征。电化学测试结果表明,当制得二维碳纳米片包覆适量钴纳米颗粒,实测的锂硫电池的性能最佳,在0.5 C倍率下首圈放电比容量为1170 mAh·g~(-1),循环200圈后,比容量仍然有503.8 mAh·g~(-1)。因此,用该方法制备的二维硫/碳复合材料对于锂硫电池正极材料的研究具有重要意义。  相似文献   

8.
采用溶胶-凝胶法制备了锂离子电池正极材料LiNi_(0.5)Mn_(1.5)O_5,重点探索了溶液p H对材料物理和电化学性能的影响。其中pH=6.0时制备的材料具有最高的放电比容量、最好的倍率和循环性能。在3 C充放电电流下材料的最高放电比容量为104.2 m Ah·g~(-1),循环200次的放电比容量为95.1 mAh·g~(-1)。  相似文献   

9.
通过简单水热反应制备磷酸铁锂前驱体,并结合后期热处理过程制备了镁离子掺杂碳包覆的磷酸铁锂正极材料。利用X射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等表征了镁离子掺杂磷酸铁锂的成分、形貌和结构。元素分布结果证明镁离子均匀掺杂在磷酸铁锂材料中。通过恒流充放电和循环伏安、交流阻抗等方法对材料的电化学性能进行测试。结果表明,镁离子掺杂后的磷酸铁锂材料具有较高的放电比容量(0.1C放电比容量为 160.1 mA·h/g)和优越的倍率性能(20C放电比容量为77.2 mA·h/g),同时减小了极化和电荷迁移电阻。这条合成路线是提高水热法制备磷酸铁锂正极材料电化学性能的有效方法。  相似文献   

10.
炭气凝胶是一种具有高比表面积和高导电性的多孔炭材料,本研究采用炭气凝胶作为负极添加剂来改善铅酸电池性能。实验添加的炭气凝胶的质量占铅粉质量的3%。在循环伏安测试中,加入炭气凝胶的铅酸电池负极的氧化和还原反应峰值电流增大。在恒电流放电测试中,根据理论值设定的放电倍率为1C时,加入炭气凝胶后的放电容量达到了190mAh·g~(-1),比不添加时提高了50%。1C充电时,加入炭气凝胶后的充电容量达到了230mAh·g~(-1),比不添加时提高了21%。在3C倍率下添加炭气凝胶的电池的放电和充电容量也都高于不添加的电池。结果证明炭气凝胶改善了铅酸电池负极充放电性能,提高了电池的库伦效率。  相似文献   

11.
采用硫酸亚铁铵作为铁源,在反应过程中引入导电剂科琴黑(KB),结合水热和煅烧的方法分两步制备了FePO_4/KB复合材料。通过XRD和SEM对合成的产物进行了结构和形貌分析,并采用循环伏安法和充放电测试考察了FePO_4/KB在钠离子电池中的电化学性能。研究结果显示,合成的材料在20mA·g~(-1)电流密度下首次放电容量能达到111.3mAh·g~(-1),除了第二次循环容量出现衰减外,该材料在之后的循环中放电容量呈逐渐上升的趋势,循环60次后放电容量达到86.6mAh·g~(-1)。  相似文献   

12.
以草酸亚铁为原料,通过水热晶化法制备了锂电池正极材料磷酸铁锂(LiFePO4)S1~S6、S8和S10,进一步以葡萄糖为碳源,w(C)=6%时,制得LiFePO4/C复合正极材料S7和S9。采用XRD和FESEM对产物的结构(structure)与织构(texture)进行了表征,对水热晶化条件进行了优化,利用扣式电池充放电方法考察了S7的电化学性能。结果表明:水热晶化的最佳反应时间为10h。最低晶化温度为190℃。当水热晶化温度达到280℃时,无碳产物(S10)中的部分Fe(II)会被氧化为Fe(III),生成FePO4•2H2O杂质相,而添加葡萄糖的产物S9则可以抑制Fe(II)向Fe(III)的转化。以草酸亚铁为铁源、晶化温度为240~260℃、晶化时间10h时,可以通过水热合成工艺制备出颗粒团聚程度轻微的磷酸铁锂正极材料,S7的0.1C放电比容量达到154 mAh/g,经过42个循环测试,其0.1C放电比容量仍可达到149 mAh/g。每制备1t纯相LiFePO4,与硫酸亚铁传统水热法相比,锂源(氢氧化锂)的摩尔量从19016 mol降低到6339 mol。  相似文献   

13.
磷酸铁锂动力电池性能研究   总被引:1,自引:0,他引:1  
采用导电性能优异的纳米碳管替代部分导电碳用以制作磷酸铁锂正极片,磷酸铁锂电池的充放电性能得到极大改善,电池内阻由未掺纳米碳管的7.5±0.5Ω降为1.7±0.3Ω,电池1 C电流下充放循环700次,容量未见衰减,维持在10 Ah。-20℃下放电容量为25℃时容量的57.35%。与1C下的放电容量相比,5 C下的放电容量未见减小。电池的优异电化学性能主要归功于整个电池电导性能的改进。  相似文献   

14.
锂硫电池正极的制备通常包括硫载体材料的制备、硫载体材料覆硫制备硫正极复合材料、混浆料、涂片等工艺,制备工艺繁琐,且涂片时所用胶粘剂、导电碳会增加正极质量,减小了电池的比能量密度。为了解决上述问题,将氧化石墨烯与硫的混合物通过离心将其渗入泡沫镍孔隙中,经过还原氧化石墨烯后干燥得到硫复合材料。这种含泡沫镍的硫复合材料可直接用作硫正极,这种极片省去了胶粘剂、导电剂,也省去了混料、涂片等工艺,且载硫量可通过离心时间及次数来控制。此硫正极首次放电比容量可达1024.76mAh·g~(-1),循环50次后比容量为396.04mAh·g~(-1)基于泡沫镍制备硫正极是一种简单有效的方法。  相似文献   

15.
采用高能球磨和喷雾干燥法制备了球形磷酸铁锂材料LFP-1,并制作18650实装电池,测试电极片的压实密度,同时选择一种商业化磷酸铁锂材料LFP-2作为对比。测试结果显示,2种LFP材料均由平均粒径为300~500 nm的一次颗粒组成,比表面积为13~15 m2/g,碳质量分数为1.5%左右。通过CR2032纽扣型电池充放电测试表明,在0.2C时,LFP-1的比放电容量约为165 mA·h/g,与商业化磷酸铁锂材料LFP-2相近。制备18650电池的结果表明,商业化磷酸铁锂LFP-2材料制备的电极片的最高压实密度可以达到2.52 g/cm3,显著高于实验室制得的磷酸铁锂材料LFP-1的最高压实密度2.25 g/cm3,这可能与材料的颗粒粒度分布不同有关。  相似文献   

16.
以Ni_(0.5)Co_(0.2)Mn_(0.3)(OH)_2前驱体和Li_2CO_3为原料,在空气气氛下采用适当的烧结工艺制备了LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2锂离子电池正极材料。采用振实密度仪、SEM和XRD等方法对材料烧结前后的密度、形貌与结构进行表征,并对烧结后的锂离子电池正极材料的电化学性能进行测试。结果表明烧结制备的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料混排因子c/a为4.9421,阳离子混排程度低I(003)/I(104)为2.222,层状结构明显。在2.8~4.3 V、0.2 C和0.5 C下,LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料的首次放电比容量为153.6 m Ah·g~(-1)和146.5 mAh·g~(-1),首次充放电效率分别为81.2%和78.8%,循环80次后容量分别保持为130.2 mAh·g~(-1)和128.1 mAh·g~(-1),容量保持率都在85%以上,具有良好的电化学性能。  相似文献   

17.
研究了铜掺杂碳包覆磷酸铁锂(LiFePO4)的微波合成。通过X射线衍射(XRD)表征了样品的化学组成和晶体结构,通过扫描电镜(SEM)考察了样品的微观形貌。分别用铜掺杂磷酸铁锂、碳包覆磷酸铁锂、铜掺杂碳包覆磷酸铁锂作为锂离子电池正极材料,进行了电化学性能测试比较。充放电测试表明,微波合成的铜掺杂碳包覆磷酸铁锂具有良好的充放电性能和循环寿命,首次放电比容量达到145 mA•h/g,循环30次后比容量仍然有143.5 mA•h/g,为初始容量的98.96%,容量几乎无衰减。  相似文献   

18.
采用两步固相法反应制备LiFePO4/C和LiFePO3.92F0.08/C。采用XRD对样品的结构进行分析。结果表明LiFePO3.92F0.08/C仍然具有橄榄石结构,但是相比于未掺杂的磷酸铁锂其具有更好的倍率性能和循环性能。LiFePO3.92F0.08/C在不同倍率下的放电比容量分别为141.7mAh/g(0.2 C)、113.2 mAh/g(1 C)、70.4 mAh/g(10 C)。尤其是在1 C倍率下循环30圈后,放电比容量仍达115.6 mAh/g。研究显示,F掺杂能够提高电子电导率进而显著改善其电化学性能。  相似文献   

19.
通过高温缩合反应合成了三聚磷酸铁(Fe H2P3O10·2H2O),采用扫描电镜(SEM)和X射线衍射(XRD)进行了表征,初步研究了其防锈性能,以及作为前驱体所合成的三聚磷酸铁锂正极材料的比容量和库伦效率。结果表明,所合成的三聚磷酸铁颗粒为类球形,粒径约0.5~1μm,防锈性能略优于三聚磷酸铝。三聚磷酸铁锂的比容量为210m Ah·g-1,明显高于磷酸铁锂的理论比容量(170m Ah·g-1),库伦效率接近100%,充放电可逆性好。该材料具有优良的防锈性能和电化学性能,具有很好的潜在应用前景。  相似文献   

20.
采用TiO_2对LiNi_(0.5)Mn_(1.5)O_4 (LNMO)正极材料进行表面包覆,以达到改善LNMO电化学性能的目的。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)、恒流充放电、循环伏安(CV)和交流阻抗(EIS)测试手段对制备的材料进行结构表征和电化学性能评价。结果表明,TiO_2能够在LNMO表面形成包覆层,且LNMO-T-2样品(TiO_2包覆量为w=1.0%)表现出最为优异的倍率性能及循环稳定性。LNMO-T-2样品在5和7 C (1 C=140 mAh·g~(-1))倍率下的放电比容量为102.3和72.1 mAh·g~(-1),比未包覆改性的LNMO分别提高14.3%和33.5%。另外,LNMO-T-2样品在2 C倍率下进行200次循环后放电比容量保持率达到87.9%,高于未包覆改性的LNMO的放电比容量保持率(82.7%)。LNMO-T-2样品电化学性能的改善归因于TiO_2表面包覆可以有效减小电极极化,同时降低电荷转移阻抗(R_(ct))。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号