首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
用羧甲基壳聚糖与硝酸镨反应,制备了羧甲基壳聚糖-镨稀土配合物。用红外光谱、X-射线光电子能谱(XPS)和扫描电镜等分析测试手段对配合物进行表征。讨论了时间和溶液的酸度对配合物形成的影响。对羧甲基壳聚糖-镨配合物配位机理进行了初步的研究,羧甲基壳聚糖-镨配合物中羧甲基壳聚糖中不仅羧基参与了配位,氨基上的氮原子和羟基氧原子也参与了配位。羧甲基壳聚糖-镨配合物和羧甲基壳聚糖相比,表面结构疏松。  相似文献   

2.
以水溶性壳聚糖(CS)与稀土离子La3+, Nd3+, Sm3+, Eu3+和Dy3+在常温和pH值为4~5的条件下制备了水溶性壳聚糖稀土配合物CS-La, CS-Nd, CS-Sm, CS-Eu和CS-Dy. 并运用FT-IR, UV和TG-DTA对其配合物进行表征,并研究了配体和配合物的热稳定性及配合物的抑菌活性. 结果表明,5种配合物均有选择性抑菌性能;其对大肠杆菌和金黄色葡萄球菌均有很好的抑菌作用;其对5种菌的最小抑菌浓度(MIC)为120~500 mg/mL,低于800 mg/mL,且抑菌效果明显优于单独的壳聚糖和稀土硝酸盐. CS-Sm对大肠杆菌的抑菌性最好,MIC为125 mg/mL;而CS-Nd和CS-Sm对金黄色葡萄球菌的抑菌性最强,MIC均为120 mg/mL.  相似文献   

3.
容学德 《化工进展》2014,33(4):1006-1009
碱性条件下将壳聚糖脱晶,利用红外光谱(FT-IR)对其结构进行了确证,并以N,N-二甲基甲酰胺和无水乙醇为介质,将脱晶壳聚糖与马来酸酐在室温条件下摩尔比按1∶1进行酰化反应18 h,合成了取代度DS=63%的N-马来酰化壳聚糖。由FT-IR测试的结果表明了马来酸酐成功接到壳聚糖分子的氨基上。将制备的N-马来酰化壳聚糖在室温下分别与氯化锌、氯化铜反应6 h,制得N-马来酰化壳聚糖与二价锌离子和二价铜离子的配合物。采用FT-IR及电子顺磁共振光谱(EPR)对配合物的结构进行表征。结果表明,N-马来酰化壳聚糖在温和条件下能与Cu(Ⅱ)、Zn(Ⅱ)形成配位化合物,N-马来酰化壳聚糖中的氨基与羧基共同参与配位。  相似文献   

4.
文章利用琥珀酸酐对壳聚糖进行改性,并合成了两个新的配合物:sucts-Cu(Ⅱ)-hpb(1)和sucts-Cu(Ⅱ)-tbz(2)[sucts=琥珀酰化壳聚糖,hpb=2-(2’-吡啶)-苯并咪唑,tbz=2-(4′-噻唑基)苯并咪唑]。应用红外光谱,紫外-可见光谱,原子吸收光谱对配合物进行了表征,采用试管倍比稀释法研究了这些配合物对苏云金杆菌、枯草芽孢杆菌、大肠杆菌和金黄色葡萄球菌的抑制作用。结果表明,两种配合物对四种细菌均有较强的抑菌活性,配合物1、2,最小抑菌浓度(MIC)分别为62.5~125μg.mL-1和125~250μg.mL-1,抗菌效果明显强于自由配体。  相似文献   

5.
壳聚糖及其金属配合物体外抗自由基活性的研究   总被引:2,自引:0,他引:2  
用分光光度法,分别对壳聚糖和壳聚糖与钙离子的配合物清除超氧阴离子自由基(O2-.)的效果进行了测定。结果显示,壳聚糖对O2-.的清除率可达73.1%,壳聚糖与钙离子的配合物对O2-.清除率可高达80.7%。实验结果表明,壳聚糖及其与钙离子的配合物具有较好的抗氧化作用。  相似文献   

6.
利用氯乙酸对壳聚糖进行改性制备羧甲基壳聚糖,并对其吸附亚铁离子的条件进行优化.结果表明,温度为40℃、pH=4.0、业铁离子的起始浓度为15mg/mL、反应时间为10 h时吸附容量最大,可达250 mg/g.对产物的性能进行表征,发现亚铁离子与羧甲基壳聚糖发生了化学配位,配合物结晶度较壳聚糖明显下降,质地变的疏松多孔.  相似文献   

7.
才秀华  张炜  武侠 《农药》2012,51(3):179-181
[目的]研究水溶性壳聚糖及其稀土离子金属配合物的抑菌活性。[方法]合成水溶性壳聚糖和稀土离子La(Ⅲ)、Ce(Ⅲ)、Nd(Ⅲ)的配合物,利用FT-IR、UV-Vis和热重分析仪对配合物进行表征,研究壳聚糖及其配合物对芦笋茎枯病菌Phomopsis asparagus的抑制活性。[结果]壳聚糖Ce(Ⅲ)配合物对Phomopsis asparagus的抑菌活性较单一的水溶性壳聚糖及其他稀土配合物显著提高。[结论]水溶性壳聚糖稀土配合物抑菌活性分别为Ce(Ⅲ)配合物>La(Ⅲ)配合物>Nd(Ⅲ)配合物>壳聚糖。  相似文献   

8.
以Fe3+溶液与壳聚糖合成了壳聚糖铁(Ⅲ)配合物,考察了反应时间、反应温度、pH值、Fe3+含量对反应的影响,确定壳聚糖铁(Ⅲ)配合物的优化合成条件为:pH值为1.8的3% Fe3+溶液和1.0 g壳聚糖在65℃下反应6 h,此时壳聚糖对Fe3+的吸附量达75 mg·g-1.通过X-射线粉末衍射(XRD)、红外光谱(FTIR)、扫描电镜(SEM)对其结构进行了表征.将制备的壳聚糖铁(Ⅲ)配合物作为催化剂用于苯酚羟基化反应中,在催化剂与苯酚的质量比为1∶100、苯酚与H2O2的摩尔比为1∶2、反应温度为60℃、反应时间为4 h的条件下,苯酚的转化率最高达22.88%,选择性最高达99.67%.  相似文献   

9.
基于饮用水除氟的改性壳聚糖制备技术研究进展   总被引:2,自引:0,他引:2  
在众多的除氟技术中,吸附法是最常用的方法。壳聚糖以其无毒、易降解、廉价易得等优点,成为制备新型除氟剂的理想材料。综述了交联壳聚糖、羧甲基壳聚糖、壳聚糖/稀土配合物、过渡金属改性壳聚糖等衍生物的制备方法、机理及其对水中氟离子的吸附效果,并对今后的研究方向进行了展望。  相似文献   

10.
在水-乙醇介质中,以寡聚酸钾与硝酸铈反应,合成寡聚酸合铈(Ⅲ)配合物,采用正交实验,考察了V水∶V乙醇、反应温度、反应时间对螯合反应的影响。结果表明,最优反应条件为:V水∶V乙醇=1∶3;温度50℃,时间6 h。通过红外光谱、紫外光谱和差热-热重分析测试手段对配合物进行了表征。红外光谱和紫外光谱均显示,Ce3+与寡聚酸配位,寡聚酸合铈(Ⅲ)配合物中金属配位方式为双齿配位。抗氧化作用研究表明,寡聚酸钾和寡聚酸合铈(Ⅲ)配合物均具有抗氧化活性,配合物与寡聚酸钾相比,对.OH有更高的清除活性。  相似文献   

11.
羧甲基壳聚糖对Fe2+的络合及光谱分析   总被引:3,自引:0,他引:3  
本文研究羧甲基壳聚糖对Fe^2+的吸附性能,探讨了时间、PH值等对吸附性质的影响.PH=6时羧甲基壳聚糖对Fe^2+最大吸附量为0.7mmol/g.并通过IR和UV光谱证实了羧甲基壳聚糖对Fe^2+的络合作用.  相似文献   

12.
A chitosan (CS) derivative, N‐(4‐methylimidazole)‐chitosan (MIC), was synthesized, and a cobalt (II) complex of bis(salicylideneethylene diamine), (CoSalen), was immobilized on it. The structure of the polymer‐immobilized CoSalen was characterized by elemental analysis, IR, XPS, fluorescence and ESR spectroscopy. It was demonstrated that the immobilization of CoSalen was realized through the coordination of a nitrogen atom of the pendant group, imidazole in MIC, to the Co(II) in CoSalen. The immobilized polymer complex is more efficient than the corresponding monomeric complex in catalyzing the oxidation of DOPA using oxygen. The results may be attributed to a site isolation effect offered by the supporting polymer chain. A mechanism similar to that for enzymatic catalysis was proposed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 2431–2436, 2006  相似文献   

13.
Essential oil containing chitosan gelatin complex microcapsules crosslinked with genipin were prepared by complex coacervation process. The effects of various parameters such as oil loading, ratio of chitosan to gelatin, degree of crosslinking on oil content, encapsulation efficiency, and the release rate of the essential oil were studied. Scanning electron microscopy study indicated that the surface of the microcapsules were more irregular as the amount of oil loading increased. Thermal stability of microcapsules improved with the increase in the amount of chitosan in chitosan–gelatin matrix as revealed by thermogravimetric analysis. FT‐IR spectroscopy and differential scanning calorimetry study indicated that there was no significant interaction between chitosan–gelatin complex and oil. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

14.
壳聚糖(CTS)与硫氰酸铵在乙醇中反应制得氨基硫脲壳聚糖(ATU-CTS)。制备ATU-CTS和碘的配合物(ATU-CTS-I2),用红外光谱和热重分析对CTS、ATU-CTS和ATU-CTS-I2进行表征。讨论了ATU-CTS与碘配合物的抑菌性质,结果表明ATU-CTS-I2对大肠杆菌和金黄色葡萄球菌抑菌敏感度为高度敏感。  相似文献   

15.
丁德润  姚有红  朱香利 《化学世界》2012,(4):197-200,210
合成了Er(Ⅲ)与低相对分子质量壳聚糖(CTS′)配合物Er(Ⅲ)-CTS′。通过UV光谱、IR光谱、1 H核磁共振、热稳定性对其进行表征,并对配合物的抑菌性和作为抗肿瘤药物载体进行初步探讨。结果表明:Er(Ⅲ)与壳聚糖的-NH2和-OH进行配位,Er(Ⅲ)-CTS′的热稳定性低于CTS′。CTS′与Er(Ⅲ)-CTS′对革兰氏阴性杆菌和革兰氏阳性球菌的最低抑菌浓度约为4g/L左右。Er(Ⅲ)-CTS′负载盐酸阿柔比星诱导HL60白血病细胞株早期凋亡率较盐酸阿柔比星提高2.98%。  相似文献   

16.
Studies on electrospun nylon-6/chitosan complex nanofiber interactions   总被引:1,自引:0,他引:1  
Composite membranes of nylon-6/chitosan nanofibers with different weight ratio of nylon-6 to chitosan were fabricated successfully using electrospinning. Morphologies of the nanofibers were investigated by scanning electron microscopy (SEM) and the intermolecular interactions of the nylon-6/chitosan complex were evaluated by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) as well as mechanical testing. We found that morphology and diameter of the nanofibers were influenced by the concentration of the solution and weight ratio of the blending component materials. Furthermore FT-IR analyses on interactions between components demonstrated an IR band frequency shift that appeared to be dependent on the amount of chitosan in the complex. Observations from XRD and DSC suggested that a new fraction of γ phase crystals appeared and increased with the increasing content of chitosan in blends, this indicated that intermolecular interactions occurred between nylon-6 and chitosan. Results from performance data in mechanical showed that intermolecular interactions varied with varying chitosan content in the fibers. It was concluded that a new composite product was created and the stability of this system was attributed to strong new interactions such as hydrogen bond formation between the nylon-6 polymers and chitosan structures.  相似文献   

17.
以壳聚糖和谷氨酸为原料,环氧氯丙烷为联结剂,合成了一种潜在的靶向型药物载体壳聚糖-谷氨酸轭合物,并采用红外光谱对产物的结构进行了表征,结果表明谷氨酸已被联结到壳聚糖分子上。  相似文献   

18.
壳聚糖与苯甲醛反应制得保护氨基的Schiff碱壳聚糖,再与硫脲和乙酸反应合成了一种含硫脲基及羧基的新型接枝壳聚糖衍生物。主要中间体及最终产物经红外光谱验证与预期结构一致。  相似文献   

19.
陈虎  许兴友  杨绪杰  陆路德  汪信 《化学试剂》2005,27(10):607-609
合成了过渡金属元素Cu与1,10-邻菲啉的配合物并进行了元素分析、红外光谱等表征,测定了配合物的晶体结构。配合物组成为[Cu(phen)3](ClO4)2,属于单斜晶系,P2(1)/n空间群。配合物中金属离子Cu2+处于N6的配位环境,配位构型为六配位的拉长八面体。  相似文献   

20.
The hot melt reactive extrusion of blends of chitosan and poly(acrylic acid) (PAA) was carried out without any process additives such as organic solvent or plasticizer. The maximum amount of chitosan in the blend during the extrusion process was kept at 40 wt%, since the melt viscosity of a system containing 50 wt% of chitosan exceeded the torque limitation of the equipment. The carboxylic groups of PAA interacted with the amine groups of chitosan during the melt process, and the system exhibited good melt flow. The interactions between these two polymers were explained by investigating the results obtained by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The thermal transition behavior of PAA was altered with a decrease of more than 10°C in the peak melting point after extrusion. The infrared (IR) spectroscopic data confirmed the existence of a complex formation and possible hydrogen bonding between chitosan and PAA during the melt process. Scanning electron microscopy (SEM) micrographs indicated that chitosan was well-dispersed in the PAA blends up to 30 wt% chitosan, with no indication of loose particles or other disruptions on the upper and lower fractured faces. This smooth interface might have been caused by the interaction between amide bonds of chitosan and carboxylic groups of PAA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号