首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 234 毫秒
1.
生物质热解半焦燃烧特性的实验研究   总被引:1,自引:0,他引:1  
《化工机械》2015,(4):487-492
鉴于目前针对生物质热解半焦燃烧特性的研究较少,以稻壳、松木屑和玉米秸秆为原料,利用自行搭建的固定床热解实验台,在300、400、500、600℃的热解温度下制备了以上3种生物质的半焦,同时采用TG-DTG热分析联用技术,研究热解终温、粒径、升温速率和生物质种类对生物质热解半焦燃烧特性的影响。结果表明:热解终温越高,半焦的燃烧性能越差;同一种半焦,粒径越小越有利于其着火与燃尽;升温速率为50℃/min时,燃烧性能达到最佳;不同生物质种类制得的半焦燃烧性能差异很大。  相似文献   

2.
采用热重-红外(TG-FTIR)联用技术研究不同升温速率对生物质热解特性影响。以氮气为载气,在室温和600℃区间,以3种升温速率(10,30,50℃/min)对生物质试样(麦秆)进行热解实验,确定了生物质起始分解温度,热解失重主要发生在快速热解阶段,升温速率越高,热解起始温度和失重速率越大;热解气体通过FTIR分析结果表明,热解初始阶段的气态产物主要是水蒸气和少量的CO及CO2,随着温度的升高,热解的主要气态产物变为CO、CO2、CH4以及小分子烃类。  相似文献   

3.
采用热重-红外(TG-FTIR)联用技术研究不同升温速率对生物质热解特性影响。以氮气为载气,在室温和600℃区间,以3种升温速率(10,30,50℃/min)对生物质试样(麦秆)进行热解实验,确定了生物质起始分解温度,热解失重主要发生在快速热解阶段,升温速率越高,热解起始温度和失重速率越大;热解气体通过FTIR分析结果表明,热解初始阶段的气态产物主要是水蒸气和少量的CO及CO2,随着温度的升高,热解的主要气态产物变为CO、CO2、CH4以及小分子烃类。  相似文献   

4.
西部煤的热解特性及动力学研究   总被引:4,自引:1,他引:3  
采用热重和红外分析法从升温速率与样品粒径的相关性等方面对平朔煤和神东煤的热解特性进行研究,并从动力学上进行分析.结果表明,随升温速率增大,煤样热解反应的初始温度、终止温度以及最大失重速率对应的温度都逐渐升高,但对粒径较小的煤样来说,这些特性温度增加的幅度较大,而最大失重率没有表现出一定的规律性;煤样粒径对热解也有一些影响,但最大失重速率与样品粒径的关系不大.随升温速率增大,热解活化能和频率因子呈现出先增大后减小的趋势.  相似文献   

5.
陕北油房梁煤与生物质共热解研究   总被引:1,自引:0,他引:1  
在N2气氛下,利用热重分析仪对生物质与陕北油房梁煤混合热解特性进行研究,重点考察了生物质混掺比对煤热解的影响。结果表明:相同升温速率下,生物质与煤在热解过程中表现出明显不同的热解特征;生物质与煤以不同掺混比进行共热解时,得到的共热解曲线分段呈现出生物质与煤单独热解的特性,且热解残余固体量与掺混比呈线性关系;此外,对比混合物共热解的实际特征曲线与理论计算曲线,发现实际DTG曲线也与理论计算的DTG曲线基本重合。从上述结果可预测,在热重反应器同步升温情况下,生物质与煤在共热解过程中不存在协同作用。  相似文献   

6.
利用同步热分析仪,采用程序升温法研究了生物质焦CO2气化反应速率特性,主要考察了升温速率对生物质焦气化反应性的影响,并用Friedman-Reich-Levi法对其动力学参数进行了计算。结果表明:DTG曲线峰值温度和最大反应速率随着升温速率的增大而增大;以二氧化碳作保护气,改变升温速率,当升温速率为15 ℃/min时,热解得到的生物质焦的反应活性最好,即气化速率最快;升温速率越大,反应速率随着温度的变化越明显;生物质焦气化阶段的活化能在-4 984.41~1 408.39 kJ/mol之间变化,气化的反应过程复杂。  相似文献   

7.
果壳生物质热解特性与动力学   总被引:1,自引:0,他引:1  
采用热重分析仪对林产果壳生物质(澳洲坚果壳、油茶壳、核桃壳)热解特性进行了研究,利用分布活化能模型(DAEM)分析了热解动力学。热解特性研究表明:油茶壳最大失重速率最小,热解起始温度、结束温度、最大失重速率温度均低于澳洲坚果壳和核桃壳;澳洲坚果壳和核桃壳热解特征值近似;3种果壳生物质随升温速率的增加,热解过程向高温区转移。DAEM研究表明:DAEM适用于3种果壳生物质的热解动力学研究,相关系数R2在0.914~0.999之间;澳洲坚果壳热解活化能83.91~211.86 kJ/mol,油茶壳热解活化能68.64~244.49 kJ/mol,核桃壳热解活化能98.69~267.75 kJ/mol;随转化率的增加,3种果壳生物质活化能呈现相同的变化趋势,但变化幅度不同。  相似文献   

8.
采用热重分析法研究了氮气气氛下竹材的热解行为及其动力学特性,分析了升温速率和粒径对竹材热解过程及动力学参数的影响. 结果表明,竹材热解分为干燥、预热解、热解和缓慢热解4个阶段;升温速率对竹材的热失重特性有显著影响,当升温速率从40℃/min增加到100℃/min时,竹材热解出现了滞后现象,热解活化能从130.87 kJ/mol下降到73.85 kJ/mol,频率因子及反应级数单调减小;不同升温速率下计算的活化能和频率因子之间存在良好的补偿效应;当粒径大于380 mm时,竹材的热解不仅受动力学控制,受颗粒传热、传质影响也较大.  相似文献   

9.
不同种类生物质热解炭的特性实验研究   总被引:5,自引:0,他引:5  
在管式炉上进行了生物质热解实验研究,分析了热解温度对生物质热解炭产量的影响规律,对比研究了农作物类和木材类生物质在相同热解条件下热解炭产量的差异,对生物质热解炭进行了电镜扫描分析,分析了不同热解温度下炭的表面结构特征。结果表明,生物质热解炭产量随热解温度升高而降低, 芸香木和稻壳的炭产量分别由300℃时的28.38%和45.84%降低到600℃时的7.55%和15.45%。在相同热解条件下,农作物热解炭产量普遍高于木材热解炭, 在400℃时稻壳糠热解得到的炭产量最高为30.32%,红胡桃热解得到的炭产量最低为19.23%。SEM分析表明,热解炭产物呈现多孔结构。  相似文献   

10.
作者利用TG/DTG曲线分析不同种类的生物质(桉树叶、橘皮)、煤分别热解,以及二者混合共同热解的基本热解特性,包括热解区间、最大热解速率的温度、不同加热速率对生物质热解进程的影响,比较不同种类生物质与煤按不同比例混合时对煤的热解特性的影响规律等。通过对热解动力学的分析,给出基本热解动力学方程,并研究了生物质、煤以及二者以不同比例掺混共热解时的热解动力学参数。探讨生物质之间、生物质与煤共热解过程中的协同作用和最佳混合比例,为生物质与煤能源的共同利用提供实验数据。  相似文献   

11.
郭晓娟  张刚 《化工进展》2014,33(4):1030-1034
利用热重-红外分析仪(TG-FTIR)研究了手机SIM卡在不同升温速率下的热解行为,探讨了升温速率对热解参数及热解产物的影响。采用分布式活化能模型求解了热解活化能,探讨了活化能随转化率的变化规律。研究结果表明:手机SIM卡呈现一段热解,主要热解温区在350~500 ℃,最大失重速率为?62.57%/min,总失重率高达90%。随着升温速率的提高,热解初始温度和热解结束温度均增大,最大热解速率和对应的温度也都增大;热解活化能在170~204 kJ/mol变化,随转化率变化规律呈现先增大后减小再增大后逐渐减小的规律,在转化率0.2时达到最大值;主要热解产物为苯、烷烯烃等可燃成分,而且含有氯、氮等元素;升温速率对热解组分没有影响。  相似文献   

12.
以微晶纤维素为原料,在氮气气氛中利用热重分析仪考察了不同升温速率条件下纤维素的热解实验,分析了纤维素的热解动力学特性。采用双等双步法和Popescu法从热分析动力学的41种机理函数中选取最概然反应机理函数,同时运用Freeman-Carroll法、Coats-Redfern法、Starink法和双等双步法4种热分析方法计算热解反应活化能(E)、指前因子(A),并对结果进行了分析比较。结果表明,随着升温速率提高,纤维素热解起始温度增加,热失重速率升高;纤维素的热解过程可分为4个阶段:脱水预热(40~120℃)、热解初期(120~260℃)、主要热解失重(260~400℃)和炭化(400~900℃)。纤维素主要热解段分两个阶段进行,其活化能在低温段(260~350℃)时,为166~176 kJ/mol,高温段(350~400℃)时,为171~216 kJ/mol;采用反Jander动力学模型能较好地描述主要热解反应过程;采用单一扫描速率法(Freeman-Carroll法和Coats-Redfern法)分析结果与实际值有较大偏差,多重扫描速率法(Starink法和双等双步法)得到的结果更具可靠性。  相似文献   

13.
利用TG-FTIR技术研究陕西关中地区小麦秸秆(麦秆)、聚对苯二甲酸乙二醇酯(PET)及其两者混合物麦秆-PET(质量比1:1)在20 K/min的升温速率下的热解行为、主要热解产物、协同效应和动力学。研究结果表明:PET热解初始温度为375℃,最大热失重速率处的温度为454.9℃,失重率为62.87%,其热解残余质量为19.42%;麦秆-PET的热解DTG曲线表现为麦秆和PET主失重峰(339.9和444℃)的叠加,且混合试样在两个强峰处的失重率分别为22.9%和73.9%,最终热解残余质量为23.52%;PET和麦秆共热解过程中会出现两个协同效应(339.9和444℃),这使得共热解产物中的CO、CH4以及芳香族、酸类、酮类、醛类、醇类、烷烃、酚类和醚类等轻质焦油组分含量高于麦秆和PET单独热解,共热解提高了热解产物的热值,改善了热解产物组成,提升了热解产物的稳定性和燃料品质;采用Coats-Redfern积分法计算得到PET在主热解区的表观活化能为355.48 kJ/mol,远高于麦秆的表观活化能(86.5 kJ/mol),麦秆-PET在低温区(258~363℃)的表观活化能为53.6 kJ/mol,在高温区(393~463℃)的表观活化能为81.6 kJ/mol。  相似文献   

14.
褐煤热解特性及热解动力学研究   总被引:1,自引:0,他引:1  
采用非等温热重法对白音华褐煤热解特性进行了实验研究,考察了升温速率和粒度对白音华褐煤热解特性的影响,同时对其热解动力学进行了分析。结果表明:升温速率是影响褐煤热解的主要因素,粒度对褐煤的热解也有一定的影响。利用Coats-Redferm积分法确定了褐煤热解低温段的动力学参数。  相似文献   

15.
常见农林生物质稻草的催化热解动力学特性   总被引:1,自引:0,他引:1  
肖瑞瑞  杨伟  于广锁 《化工进展》2013,32(5):1001-1005
采用热重法对稻草的催化热解特性及反应动力学进行了研究。同时采用Coats-Redfern法对稻草的催化热解过程进行了拟合计算,得到稻草热解的活化能和指前因子。结果表明,酸洗脱灰后稻草热解的初始温度和结束温度都有所升高,稻草的热解反应活性明显降低,热解曲线向高温区移动;而金属盐的加入使稻草的热解曲线向低温区移动,反应活性增加。酸洗后稻草热解活化能升高,加入不同浓度的钾离子、钙离子和镁离子后求得的活化能明显降低,而且加入金属离子的浓度越高,稻草热解的活化能越低。  相似文献   

16.
研究了污水处理厂污泥在制备泥质活性炭过程中的热解机理,利用热重(TG)分析仪和非等温技术对活化污泥的热解动力学进行了系统研究,分别对活化污泥低温热解段和中温热解段热失重微分(DTG)曲线峰值前后求解极限动力学参数和热解机理函数,结合Flynn-Wall-Ozawa法和Coats-Redfern法,采用双外推法确定了活化污泥的最概然热解机理函数. 结果表明,低温热解段DTG曲线峰值前后两部分的极限动力学参数反应活化能E和频率因子A分别为Ea?0=32.53 kJ/mol, lnAb?0=4.37;Ea?0=39.7 kJ/mol, lnAb?0=3.94(a为样品转化率,b为升温速率);中温热解段DTG峰值前后两部分的极限动力学参数分别为Ea?0=130.24 kJ/mol, lnAb?0=19.10;Ea?0=150.14 kJ/mol, lnAb?0=17.13. 活化污泥热解机理满足四阶段热解机理模型,热解机理依次为Mampel-Power法则(n=1/3)、3级化学反应、2级化学反应、Mampel-Power法则(n=3/2).  相似文献   

17.
张雪  白雪峰 《化学与粘合》2011,(6):10-14,21
采用热重分析法(TGA)对几种纤维素类生物质(稻壳、豆杆、豆壳、稻杆)的热解过程及其动力学进行了研究.实验是在氮气气氛下,分别以10,20,30,40,50℃/min等加热速率和40~60,60~80,80~100,100目等粒径进行的.实验结果表明:几种纤维素类生物质的非等温热解只有1个剧烈失重阶段.随升温速率的提高...  相似文献   

18.
为获得较好的褐煤半焦制备工艺参数,研究了不同制备条件(热解终温、升温速率、原煤粒径、热解气氛)下制得的乌拉盖褐煤半焦的燃烧性能和燃烧动力学参数。结果表明,热解终温对半焦品质的影响最大,热解升温速率、原煤粒径和热解气氛对半焦燃烧特性的影响不显著。热解终温由350℃升至600℃时,反应指数RI由235℃升至292℃,半焦着火性能变差;燃尽指数Cb由4.68升至6.15,半焦燃尽性能变差;爆炸指数Kd由2.54降至0.46,半焦爆炸倾向性变低;反应活化能由44.4 k J/mol升至63.4 k J/mol,半焦燃烧动力学特性变差。热解终温为520℃时制得的半焦反应指数、燃尽指数、爆炸指数和反应活化能分别为265℃,5.34、0.80和53.2 k J/mol,属于易着火、易燃尽、中等爆炸燃料,燃烧特性良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号