首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
UHMWPE/蒙脱土纳米复合材料滑动轴承的研制   总被引:5,自引:0,他引:5  
采用蒙脱土(MMT)层间聚合改性和熔体插层方法制备了超高分子量聚乙烯(UHMWPE)/MMT纳米复合材料,并将复合材料注射成型为纯复合材料和复合型两类滑动轴承。研究了UHMWPE/MMT纳米复合材料的摩擦性能,结果表明,这是一种性能优异、成型简便的摩擦磨损材料。提出了该材料滑动轴承设计的基本要求,为实际应用提供了理论依据。  相似文献   

2.
UHMWPE纤维/LDPE复合材料防弹性能及机理研究   总被引:9,自引:0,他引:9  
本文探讨了用超高分子量聚乙烯(UHMWPE)纤维增强低密度聚乙烯(LDPE)复合材料的防弹性能,研究了不同基体含量对复合材料防弹性能的影响。实验证明,UHMWPE纤维/LDPE复合材料具有较好的防弹性能,其最佳的基体含量在26%左右。同时,本文还通过分析防弹片材的断裂区域及复合材料的防弹机理确定了弹丸的变形情况和靶片“背凸”在防弹作用中的贡献。  相似文献   

3.
为改善超高分子量聚乙烯(UHMWPE)在海水润滑介质下的耐磨损性能,采用氧化石墨烯(GO)填充与辐照交联对UHMWPE进行改性处理。利用摩擦磨损试验机研究了辐照前后UHMWPE与GO/UHMWPE复合材料在人工海水润滑介质下的摩擦学性能,利用扫描电子显微镜(SEM)与三维表面轮廓仪扫描试样磨痕表面形貌,计算其磨损率,并分析了其摩擦磨损机理。结果表明,在人工海水润滑介质下,GO填充与辐照交联改性处理均略微增加了UHMWPE的摩擦因数,降低了磨损率;二者共同使用可以协同增强UHMWPE的耐磨性能,降低复合材料的摩擦因数与磨损率; GO填充显著提高了UHMWPE的抗磨粒磨损与抗疲劳磨损性能;辐照交联改性处理进一步提高了GO/UHMWPE复合材料的抗磨粒磨损性能。  相似文献   

4.
超高分子量聚乙烯(UHMWPE)由于其优异的自润滑特性、较好的耐磨性和耐腐蚀性等性能,被认为是一种较为适合的水润滑条件下的摩擦副材料。为了提升超高分子量聚乙烯在水润滑条件下的耐磨损性能,采用填充氧化石墨烯(GO)和辐照处理改善UHMWPE的耐磨损性能。采用接触角测量仪对试样进行了接触角测量。采用摩擦磨损试验机在水润滑条件下研究了辐照前后UHMWPE和UHMWPE/GO复合材料的磨损性能,并利用场发射扫描电镜(SEM)观察磨损后表面形貌。结果表明,GO的加入降低了UHMWPE的接触角,辐照处理也使得UHMWPE和UHMWPE/GO复合材料的接触角降低,提高了材料的湿润性;水润滑条件下,GO填充和辐照处理都能够提高UHMWPE的耐磨性,并且两者的共同作用可以得到抗磨损性能更优的辐照UHMWPE/GO复合材料。  相似文献   

5.
以三维编织超高分子量聚乙烯(PE–UHMW)纤维为增强体,环氧树脂(EP)为基体,通过树脂传递模塑工艺制备了EP/三维编织PE–UHMW纤维复合材料,研究了纤维含量和载荷对复合材料摩擦系数与磨损率的影响,并采用扫描电子显微镜对复合材料磨损表面进行了分析。结果表明,随着纤维体积含量的增加,复合材料的摩擦系数和磨损率逐渐减小;随着载荷的增大,复合材料的摩擦系数逐渐减小,但磨损率增大;复合材料的磨损机制以粘着磨损为主。  相似文献   

6.
聚乙烯纤维增强有机玻璃复合材料性能影响因素的研究   总被引:3,自引:0,他引:3  
通过真空浸渍法,成功制备出聚乙烯纤维增强有机玻璃(UHMWPE/PMMA)复合材料,就纤维含量以及孔隙率等对材料性能的影响进行了初步研究,重点探讨了孔隙率对复合材料的影响。  相似文献   

7.
超高分子量聚乙烯纤维复合材料的研究进展   总被引:5,自引:0,他引:5  
概述超高分子量聚乙烯(UHMWPE)纤维增强复合材料的研究进展,详细介绍了UHMWPE纤维的各种优良特性和UHMWPE纤维增强复合材料用基体树脂,以及UHMWPE纤维增强复合材料的制备方法与工艺,对UHMWPE增强复合材料的应用及其应用领域进行了汇总。  相似文献   

8.
通过溶液法共混复合制备超高分子量聚乙烯(UHMWPE)纳米复合材料,使用密度分析、拉伸性能研究、冲击性能试验、砂浆磨损指数等研究材料的刚性、韧性、磨损特性;通过摩擦因数实验模拟产品在实际应用中的磨损情况,筛选优质润滑剂;采用差示扫描量热法(DSC)研究了UHMWPE纳米复合材料在不同预处理后的结晶性能;使用扫描电子显微镜(SEM)观察UHMWPE纳米复合材料在低温脆断后的表界面形态。结果表明:和机械混合法相比,溶液法制备的UHMWPE纳米复合材料中的纳米包覆体系具有更好的分散性,相与相之间稳定结合,与超高基体产生更强的相互作用。  相似文献   

9.
为获得最佳的混编排列方式,基于三维四向编织结构,以碳纤维(CF)和超高分子质量聚乙烯(UHMWPE)纤维为增强体,以环氧树脂(EP)为基体,采用真空导入工艺设计制备了三维编织UHMWPE/CF/EP复合材料,并研究了不同混编排列方式预制件复合材料的弯曲性能。结果发现:韧性UHMWPE纤维的加入改变了非混杂碳纤维三维编织树脂基复合材料的弯曲破坏模式,破坏模式呈现为塑性破坏特征;基于CF和UHMWPE纤维数量之比为1∶1的情况下,采用逐块排列混编方式的复合材料的弯曲性能最佳,较之逐束排列混编方式的复合材料提高24.28%。  相似文献   

10.
利用MM-200型摩擦磨损实验机,考察了纳米TiO2增强超高分子量聚乙烯(UHMWPE)复合材料在生理盐水润滑下,与Co—Cr—Mo合金对摩时的摩擦磨损性能,用光学显微镜观察了材料摩擦表面磨痕形貌。结果表明,适当填充纳米TiO2可提高UHMWPE的硬度,显著降低摩擦系数,增强耐磨性。UHMWPE的磨损主要表现为粘着、犁沟及塑性变形,TiO2-UHMWPE复合材料的磨损表现为轻微疲劳磨损。  相似文献   

11.
Three‐dimensional (3D) braided polyethylene (PE) fiber‐reinforced poly(methyl methacrylate) (PMMA), denoted as PE3D/PMMA, composites were prepared. Mechanical properties including flexural and impact properties, and wear resistance were tested and compared with those of the corresponding unidirectional PE fiber–PMMA (abbreviated to PEL/PMMA) composites. Both untreated and chromic acid‐treated PE fibers were used to fabricate the 3D composites in an attempt to assess the effect of chromic acid treatment on the mechanical properties of the composites. Relative changes of mechanical properties caused by fiber surface treatment were compared between the PE3D/PMMA and PEL/PMMA composites. The treated and untreated PE fibers were observed by scanning electron microscopy (SEM) and analyzed by X‐ray photoelectron spectroscope (XPS). SEM observations found that micro‐pits were created and that deeper and wider grooves were noted on the surfaces of the PE fibers. XPS analysis revealed that more hydroxyl (? OH) and carboxyl (? COOH) groups were formed after surface treatment. The physical and chemical changes on the surfaces of the PE fibers were responsible for the variations of the mechanical properties of the PE/PMMA composites. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 949–956, 2006  相似文献   

12.
This is a comparative study between ultrahigh molecular weight polyethylene (UHMWPE) reinforced with micro‐ and nano‐hydroxyapatite (HA) under different filler content. The micro‐ and nano‐HA/UHMWPE composites were prepared by hot‐pressing method, and then compression strength, ball indentation hardness, creep resistance, friction, and wear properties were investigated. To explore mechanisms of these properties, differential scanning calorimetry, infrared spectrum, wettability, and scanning electron microscopy with energy dispersive spectrometry analysis were carried out on the samples. The results demonstrated that UHMWPE reinforced with micro‐ and nano‐HA would improve the ball indentation hardness, compression strength, creep resistance, wettability, and wear behavior. The mechanical properties for both micro‐ and nano‐HA/UHMWPE composites were comparable with pure UHMWPE. The mechanical properties of nano‐HA/UHMWPE composites are better compared with micro‐HA/UHMWPE composites and pure UHMWPE. The optimum filler quantity of micro‐ and nano‐HA/UHMWPE composites is found to be at 15 wt % and 10 wt %, separately. The micro‐ and nano‐HA/UHMWPE composites exhibit a low friction coefficient and good wear resistance at this content. The worn surface of HA/UHMWPE composites shows the wear mechanisms changed from furrow and scratch to surface rupture and delamination when the weight percent of micro‐ and nano‐HA exceed 15 wt % and 10 wt %. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42869.  相似文献   

13.
In this work, blended composites with ultra-high molecular weight polyethylene (UHMWPE) as matrix polymer, α-zirconium phosphate (α-ZrP) as filler, and sodium polyacrylate (PAANa) as compatibilizer were prepared. The interfacial interaction between PAANa as a compatibilizer and the components of α-ZrP/UHMWPE was studied by molecular dynamics simulation. The friction and wear behavior of the GCr15 ball/composite friction pair under seawater lubrication under different loads were explored, and the friction and wear mechanism were analyzed. The results show that PAANa as a compatibilizer can effectively improve the interfacial interaction force between components of PAANa/α-ZrP/UHMWPE composites. The composites exhibited different trends regarding the relationship between tribological properties and α-ZrP content under various loads. The wear mechanism of composites under low load is mainly represented by extrusion deformation. With the increase of load, the wear mechanism of composites gradually changed into adhesive wear and abrasive wear (depending on the content of α-ZrP). This work provides a theoretical basis for preparing and applying other α-ZrP/polymer blend composites.  相似文献   

14.
The tribological properties of glass fiber reinforced polyamide 6 (GF/PA6, 15/85 by weight) and its composites filled with solid lubricants were investigated. The main purposes of this article were to study the hybrid effect of solid lubricants with glass fiber as well as the synergism of combined solid lubricants, the wear mechanisms were studied by SEM. The results showed that graphite impaired the tribological properties of GF/PA6, but the tribology behavior of graphite filled GF/PA6 composite could be significantly improved by polytetrafluroethylene (PTFE) or/and ultrahigh molecular weight polyethylene (UHMWPE), and the GF/PA6 composite filled with 5 wt % graphite, 5 wt % PTFE together with 5 wt % UHMWPE exhibited the lowest friction coefficient and wear rate, which was almost a reduction in friction coefficient by 37% and in wear rate by 34% contrast to GF/PA6. The effect of load was also studied, and the results showed that the friction coefficient was virtually not affected by load, while the wear rate all increased with increasing load. POLYM. COMPOS., 34:1783–1793, 2013. © 2013 Society of Plastics Engineers  相似文献   

15.
Ultra‐high‐molecular‐weight polyethylene/poly (phenyl p‐hydroxyzoate) composites (coded as UHMWPE/PPHZ) were prepared by compression molding. The effects of the poly (phenyl p‐hydroxyzoate) on the tribological properties of the UHMWPE/PPHZ composites were investigated, based on the evaluations of the tribological properties of the composites with various compositions and the examinations of the worn steel surfaces and composites structures by means of scanning electron microscopy and transmission electron microscopy. It was found that the incorporation of the PPHZ led to a significant decrease in the wear rate of the composites. The composites with the volume fraction of the PPHZ particulates within 45% ~ 75% showed the best wear resistance. The friction coefficient of the UHMWPE/PPHZ composites decreased with increasing load and sliding velocity, while the wear rates increased with increasing load. This was attributed to the enhanced softening and plastic deformation of the composites at elevated load or sliding velocity. The UHMWPE/PPHZ composites of different compositions had differences in the microstructures and the transfer film characteristics on the counterpart steel surface as well. This accounted for their different friction and wear behaviors. The transfer film of the UHMWPE/PPHZ composites appeared to be thinner and more coherent, which was largely responsible for their better wear resistance of t composite than the UHMWPE matrix. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2336–2343, 2005  相似文献   

16.
Polyimide-modified ultrahigh molecular weight polyethylene (UHMWPE) composites were fabricated by hot-press molding process. Mesoscopic morphologies of polyimide/UHMWPE blending systems show high compatibility between the phases of polyimide and UHMWPE when the weight ratio of polyimide is no more than 50?wt%. Investigation of the tribological properties with a reciprocating ball-on-flat contact tribometer shows that the polyimide filler has important effects on the friction and wear behavior of UHMWPE composites. Compared to pure UHMWPE, the composite with 50?wt% polyimide improved tribological properties best and exhibited 43.1% reduction in friction coefficient and 66.7% reduction in wear volume loss.  相似文献   

17.
通过挤出方法制备了尼龙6(PA6)/超高分子量聚乙烯(UHMWPE)复合材料,考察了复合材料摩擦学性能和力学性能。用光学显微镜观察分析了复合材料磨损表面形貌。结果表明:复合材料摩擦性能较纯尼龙有一定的提高,当UHMWPE含量为5%和10%时,复合材料耐磨减摩性较好。但随着UHM-WPE含量的增加,复合材料的硬度、拉伸强度、伸长率有所下降。  相似文献   

18.
牛军锋 《塑料科技》2012,40(10):55-57
分别以玻璃纤维(GF)与碳纤维(CF)作为增强体制备了聚苯硫醚(PPS)纤维增强复合材料。研究了GF/PPS和CF/PPS复合材料的摩擦磨损性能,以及不同体积分数的纤维增强体、不同载荷与滑动速度对复合材料的摩擦磨损性能的影响。结果表明:GF与CF的引入有效地提高了复合材料的摩擦磨损性能;随纤维体积分数的增加复合材料的摩擦系数逐渐增加,随载荷的增加复合材料的摩擦系数逐渐降低,但磨损率增大。  相似文献   

19.
Irradiation surface modification method was used for the surface treatment of ultrahigh molecular weight polyethylene (UHMWPE) fibre to improve the interfacial adhesion of the UHMWPE fibre reinforced PVC composite. The surface characteristics of untreated and treated UHMWPE fibre were characterised by XPS and Fourier transform infra-red spectroscope. The friction and wear properties of the PVC composites filled with differently surface-treated UHMWPE fibres (20?vol.-%), were investigated on a ring-on-block tribometer. Experimental results revealed that irradiation treatment largely increased the mechanical properties of UHMWPE fibre/neoprene/PVC (UF/N/PVC) composites. Scanning electron microscope investigation of worn surfaces of PVC composites showed that surface-treated UF/N/PVC composite had the strongest interfacial adhesion.  相似文献   

20.
Ultrahigh‐molecular‐weight polyethylene (UHMWPE) and UHMWPE composites reinforced with graphene oxide (GO) were successfully fabricated through a new step of liquid‐phase ultrasonic dispersion, high‐speed ball‐mill mixing, and hot‐pressing molding technology. When the GO/UHMWPE composites were lubricated with deionized water (DW) and normal saline (NS) solution, their friction and wear properties were investigated through sliding against ZrO2. The worn surface and wear volume losses of these composites were studied with scanning electron microscopy, X‐ray photoelectron spectroscopy, and a Micro‐XAM 3D non‐contact surface profiler. The results show that the microhardness of the GO/UHMWPE composites was improved by 13.80% and the wear rates were decreased by 19.86 and 21.13%, whereas the depths of the scratches were decreased by 22.93 and 23.77% in DW and NS lubricating conditions, respectively. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39640.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号