首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
固体超强酸SO_4~(2-)/TiO_2催化合成没食子酸丙酯   总被引:5,自引:0,他引:5  
李德江  付和清 《应用化工》2003,32(4):42-43,60
以固体超强酸SO42-/TiO2为催化剂,以没食子酸和正丙醇为原料,合成了没食子酸丙酯。考察了醇酸摩尔比、催化剂用量、催化剂焙烧温度以及反应时间对酯收率的影响。结果表明:焙烧温度为500℃时,制得的催化剂活性最高;适宜的反应条件如下:没食子酸与正丙醇的摩尔比为1∶15,固体超强酸SO42-/TiO21.8g,在115~120℃反应2.5h,酯收率达96.3%。  相似文献   

2.
研究了磁性纳米固体超强酸SO42-/TiO2为催化剂,以没食子酸与正丙醇为原料合成没食子酸酯的反应。探讨了固体超强酸制备过程中浸泡液浓度、浸泡时间、焙烧温度、焙烧时间对酯产率的影响。结果表明最适宜的制备条件是:浸泡液硫酸浓度0.5 mol/L,浸泡时间2 h,焙烧温度500℃,焙烧时间2 h制得的催化剂催化合成没食子酸正丙酯催化活性最好,酯收率可达82.2%。  相似文献   

3.
宋胜梅  凌翠霞  丁秀云 《化工时刊》2004,18(10):42-43,47
研究了以磁性纳米固体超强酸SO4^-2/TiO2为催化剂,以没食子酸与正丙醇为原料合成没食子酸酯的反应。探讨了醇酸比、催化剂用量、催化剂焙烧温度以及反应时间、反应温度对酯产率的影响。结果表明最适宜的反应条件是:正丙醇、酸、催化剂的物质的量比:0.934/0.0825/0.00524,反应温度为120℃,反应时间2.5h,产率为84.3%。  相似文献   

4.
固体超强酸TiO2/SO42-催化合成α-萘乙酸甲酯   总被引:3,自引:0,他引:3  
马冰洁  唐洪波 《农药》2004,43(4):165-166
以固体超强酸TiO2/SO4^2-为催化剂,研究了α-萘乙酸与甲醇的酯化反应,探讨了催化剂种类、用量及活化温度等反应条件,发现固体超强酸TiO2/SO4^2-对α-萘乙酸与甲醇的酯化反应具有较高的催化活性,并使后处理简化。较佳反应条件为:α-萘乙酸与甲醇的摩尔比为1:5.3,固体超强酸TiO2/SO4^2-活化温度为450℃~500℃,活化时间3h,用量为α-萘乙酸用量的3%,反应时间6h,反应温度74.5℃~76℃。在试验筛选的最佳条件下,酯产率超过96%,精酯收率达83%。  相似文献   

5.
SO42-/TiO2催化合成乙酸环己酯   总被引:3,自引:0,他引:3  
魏玲  余东  史玉杰  徐洪  仲丽 《化学世界》2005,46(8):495-497
以固体超强酸SO4^2-/TiO2催化乙酸和环乙醇合成了乙酸环己酯。实验确定最佳反应条件为n(乙酸):n(环己醇):1.0:1.2,SO4^2-/TiO2用量为乙酸质量的10%,反应时间90min,酯化率达92.3%,并与其它催化剂作了比较,结果表明,以SO4^2-/TiO2为催化剂,具有催化剂量少、重复使用效果好、反应时间短、酯收率高、方法简单等优点。  相似文献   

6.
以新型固体超强酸SO2 -4/TiO2 WO3 为催化剂 ,用乙酸和正戊醇反应合成乙酸正戊酯。探讨了醇酸物质的量比、催化剂用量、反应时间等因素对酯收率的影响。实验表明 :固体超强酸SO2 -4/TiO2 WO3 具有较好的催化活性 ,醇酸物质的量比为 1.35∶1,催化剂用量为反应物料总质量的 1.0 % ,反应时间为 2 .0h ,反应温度 10 4~ 116℃ ,收率达 6 5 .0 %  相似文献   

7.
以新型固体超强酸SO2-4/TiO2-WO3 为催化剂,用乙酸和正戊醇反应合成乙酸正戊酯.探讨了醇酸物质的量比、催化剂用量、反应时间等因素对酯收率的影响.实验表明固体超强酸SO2-4/TiO2-WO3具有较好的催化活性,醇酸物质的量比为1.35∶1,催化剂用量为反应物料总质量的1.0%,反应时间为2.0*#h,反应温度104~116*#℃,收率达65.0%.  相似文献   

8.
高兴文  曹洪恩  宋宝安  王玉申 《农药》2005,44(9):407-409
制备了固体超强酸SO4^2-/TiO2,并将其用于催化L-乳酸与四氢糠醇的酯化反应。通过气相色谱跟踪反应,确定最佳反应条件为:硫酸浸泡浓度为1.0mol/L,固体超强酸SO4^2-/TiO2焙烧温度为450℃,焙烧时间为4.5h,带水剂为环己烷,醇酸摩尔比为2.5:1,催化剂用量为L-乳酸质量的8%,酯化反应时间为6h。在此条件下,合成L-乳酸四氢糠酯产率可达82.68%,精酯收率76.02%,产品化学纯度97.84%,光学纯度97.62%。  相似文献   

9.
固体超强酸SO2-4/Fe2O3催化合成丙酸丙酯   总被引:4,自引:1,他引:4  
利用制备的固体超强酸SO4^2-/Fe2O3代替浓硫酸作催化剂,将正丙酸和正丙醇酯化合成丙酸丙酯,讨论了催化剂的制备及合成丙酸丙酯的条件。实验表明:固体超强酸不仅能减少对生产设备的腐蚀,而且具有很好的催化活性,当催化剂用量为1.0g(正丙酸为0.1mol),醇酸摩尔比为2.5:1,回流反应3h时,酯收率可达97.2%。  相似文献   

10.
TiO2/SO4^2- —HZSM-5催化合成乙酸乙酯   总被引:4,自引:0,他引:4  
以固体超强酸TiO2/SO4^2- —HZSM-5沸石分子筛为催化剂,应用常压液固相酯化反应合成了乙酸乙酯。考察了催化剂用量,醇酸比、反应温度和反应时间对酯产率的影响。结果表明,催化剂用量为2g,醇酸比为1:2.5,反应温度为100-110℃,反应时间为3h,酯收率为84%。  相似文献   

11.
以SO_4~(2-)/M_xO_y型固体酸作为水解催化剂,对2-膦酸丁烷-1,2,4-三羧酸五甲酯水解制备2-膦酸丁烷-1,2,4-三羧酸(PBTCA)的反应进行了研究,探讨了催化剂加入量、水酯比、反应温度以及反应时间对水解转化率的影响,确定了反应的最佳工艺条件。结果表明,以SO_4~(2-)/M_xO_y型固体酸催化水解PBTC五甲酯,能有效缩短水解反应时间,提高产品质量,并且催化剂活性高、用量少,产品经~(31)PNMR谱测定,PBTCA物质的量分数达91.6%。  相似文献   

12.
以杂多酸 (HWP)为催化剂 ,以顺丁烯二酸酐与仲辛醇为原料 ,催化合成马来酸 (2 - 2乙基己基 )酯。研究了催化剂的用量、反应时间、反应温度、酸醇量比对酯化反应的影响。催化剂能使用多次 ,催化效果较好  相似文献   

13.
合成了固体超强酸 SO2 -4/Ti O2 ,并在其催化下 ,由肉桂酸和无水乙醇发生酯化反应 ,合成肉桂酸乙酯。考察了催化剂用量、酸醇比、反应时间及催化剂重复使用次数对酯化率的影响 ,结果表明 :当 0 .0 2 mol肉桂酸、0 .1 0 mol无水乙醇和 1 .2 0 g催化剂一起加热回流 4h,产品收率可达89.3%。  相似文献   

14.
固体超强酸SO_4~(2-)/TiO_2催化合成利巴韦林缩合物研究   总被引:1,自引:0,他引:1  
以1,2,4-三氮唑-3-羧酸甲酯和1,2,3,5-四-O-乙酰基-β-D-呋喃核糖为原料,在催化剂固体超强酸SO42-/TiO2的作用下得到了1-(2,3,5-三-O-乙酰基-β-D-呋喃核糖基)-1H-1,2,4-三唑-3-羧酸甲酯,简称利巴韦林缩合物。它是广谱抗病毒药物利巴韦林的重要中间体。通过对影响反应的多种因素进行研究以及反应条件的优化,结果表明:当催化剂为固体超强酸SO42-/TiO2、催化剂用量为12%、1,2,4-三氮唑-3-羧酸甲酯和1,2,3,5-四-O-乙酰基-β-D-呋喃核糖投料摩尔比为1.05:1、反应温度控制在100℃~110℃、反应时间为2h、甲醇重结晶,所得产物收率为87.0%,纯度99.5%(HPLC)。该反应方法催化剂易制备,催化效率较高,容易循环使用,不污染环境,有一定的再生能力,易从产品中除去,操作过程简便,产品色泽好、纯度高。  相似文献   

15.
以对甲苯碘酸为催化剂合成(4R,5R)-2-乙基-2-(6-甲氯基-2-萘基)-1,3-二氧戊环-4,5-二羧酸二甲酯  相似文献   

16.
以SXC-9强酸性阳离子交换树脂为催化剂合成2-酮基-L-古龙酸甲酯。考察了催化剂的活性、催化剂的用量、搅拌速度、反应时间对酯化合成2-酮基-L-古龙酸甲酯的影响,找到了最佳工艺条件。结果表明,SXC-9树脂具有良好的催化性能,反应收率达到98%。  相似文献   

17.
以稀土固体超强酸SO2-4/TiO2/La3+为催化剂,氯乙酸与乙醇为原料合成氯乙酸乙酯。研究了氯乙酸与乙醇的摩尔比、催化剂用量、环己烷的用量、反应时间诸因素对产品收率的影响。结果表明:SO2-4/TiO2/La3+是合成氯乙酸乙酯的良好催化剂,适宜的反应条件如下:氯乙酸与乙醇的摩尔比为1∶3.0,催化剂的用量0.8g,环己烷用量15mL,反应2.0h,氯乙酸乙酯的收率可达92.7%。  相似文献   

18.
陈美凤 《广州化工》2010,38(1):102-103
用铁粉还原硝基合成2-乙酰基-6-氨基苯甲酸甲酯,考虑了溶剂、催化剂、酸、铁粉用量、反应时间等因素对还原效果的影响,找出了用弱酸NH4C l代替盐酸以减少酯的水解;用甲醇以减少水的用量,便于后处理的路线。结果表明,采用FeC l2.4H2O和NH4C l(1:2)为混合物催化剂,用甲醇以减少水的用量,使反应得到了改善,反应速率大幅度提高,水解程度得到较好的控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号