首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
为了改善镁质胶凝材料的性能,结合硫氧镁水泥和氯氧镁水泥两个体系的特性,制备了硫、氯氧镁混合胶凝体系.通过测试凝结时间、抗压和抗折强度对混合体系的凝结硬化性能及耐水性进行了研究,利用XRD、SEM和EDS分析表征手段对混合体系水化产物的物相组成、元素分布及微观形貌进行了分析.结果表明:溶液中氯化镁质量分数增加,浆体的凝结时间延长,当氯化镁质量分数大于70%,凝结时间缩短.与硫氧镁水泥和氯氧镁水泥相比,混合体系的抗压强度降低、抗折强度稍有增加,浸泡28d后表现出了良好的耐水性.XRD和SEM数据表明:晶体之间没有形成连结力强的连续结构,使混合体系的力学性能降低.浸水后水化产物微观形貌的改变是混合体系耐水性增加的主要原因.  相似文献   

2.
为改善硫氧镁水泥的力学性能和耐水性,研究了丙二酸(Malonic acid,MOA)对硫氧镁水泥力学性能、耐水性、凝结时间及体积稳定性的影响.采用SEM、XRD、FT-IR对体系中的水化产物进行了表征.研究结果表明:MOA的加入,延缓了体系的水化进程,促进517相的生成并抑制Mg(OH)2相的形成,使体系微观结构更加致密,不仅显著提高了硫氧镁水泥的力学性能,耐水性及体积稳定性也得到了有效改善.  相似文献   

3.
为探究矿物掺合料对改性硫氧镁水泥的影响及作用机理,分别将不同掺量的粉煤灰、矿粉掺入改性硫氧镁水泥中,对其力学性能、耐水性和耐酸性进行测试,并结合X射线衍射和扫描电镜对其物相组成及微观形貌进行表征和分析。研究结果表明:粉煤灰的掺入会提高改性硫氧镁水泥的3 d强度,但后期强度有所下降,当粉煤灰掺量大于20%(质量分数)时,其28 d抗压强度相较于基准组损失了14.7%;掺入矿粉对改性硫氧镁水泥的前期强度影响较小,并导致后期强度下降,当矿粉掺量为30%~40%(质量分数)时,水泥的28 d强度损失率高达17.3%。适量的粉煤灰与矿粉均能够提升改性硫氧镁水泥的耐水性和耐硫酸腐蚀性,其中水泥的耐硫酸腐蚀性随着粉煤灰掺量的增加而增强,耐硫酸腐蚀效果最好时矿粉掺量为20%。  相似文献   

4.
本文探究了两种有机膦酸对硫氧镁水泥抗压强度、耐水性能和凝结时间的影响,通过X射线衍射、同步热分析和扫描电子显微镜测试对硫氧镁水泥的物相组成及微观形貌进行表征和分析。结果表明:当氨基三亚甲基膦酸(ATMP)掺量在0.75%(质量分数,下同)时,相较空白组28 d抗压强度增加了113.99%,软化系数增加了101.86%;羟基乙叉二膦酸(HEDP)掺量为0.75%时,硫氧镁水泥表现出最佳机械强度及较高的缓凝效果,且软化系数达到0.93;两种有机膦酸进行复配(总掺量为0.75%),当m(ATMP)∶m(HEDP)为3∶1时,对硫氧镁水泥具有最佳改性效果。有机膦酸能与MgO水化过程中产生的[Mg(OH)(H2O)x]+形成稳定的螯合物,减缓活性MgO水解为Mg(OH)2的进程,从而延缓硫氧镁水泥的凝结时间,为硫氧镁水泥在实际工程中的应用提供了可行性。  相似文献   

5.
为了研究硫氧镁水泥早期凝结性能,对不同原材料用量的水泥浆体进行了凝结速度测试,讨论了改性剂柠檬酸掺量、MgO(活性)/MgSO4和H2O/MgSO4摩尔比对硫氧镁水泥浆体凝结时间的影响.结果表明,柠檬酸对硫氧镁水泥具有较强的缓凝作用,随着改性剂柠檬酸掺量的增加,硫氧镁水泥的初、终凝时间均发生延长.固定H2O/MgSO4摩尔比时,硫氧镁水泥的凝结时间随着MgO(活性)/MgSO4摩尔比的提高而缩短,浆体稠度增大.固定MgO(活性)/MgSO4摩尔比时,H2O/MgSO4摩尔比越大,硫氧镁水泥凝结时间越长.  相似文献   

6.
磷酸镁水泥具有早强快硬性的特点,导致了其制备的混凝土存在长距离运输不易搅拌、难以泵送等施工问题.针对这一问题,采用粉煤灰对磷酸镁水泥进行改性,研究了不同粉煤灰掺量对磷酸镁水泥流变性的影响.采用布氏粘度计测定了磷酸镁水泥浆体在不同剪切速率下的流变参数,使用宾汉姆流体模型拟合了磷酸镁水泥流变曲线.利用冷场发射扫描电镜与X射线衍射仪研究了粉煤灰对磷酸镁水泥微观结构与水化产物的影响,并探讨了粉煤灰对磷酸镁水泥流变性的改性机理.结果 表明,粉煤灰可以有效地改善磷酸镁水泥的流变性并延长凝结时间;“形貌效应”是粉煤灰提高磷酸镁水泥流变性的主要原因;粉煤灰的掺入不会改变磷酸镁水泥水化产物的物相组成,但会对磷酸镁水泥的部分力学特性产生不良影响.  相似文献   

7.
含镁铝尖晶石的铝酸盐水泥的制备及其抗侵蚀性   总被引:1,自引:0,他引:1  
以白云石和工业Al2O3为原料,采用烧结法制备了含镁铝尖晶石的铝酸盐新型水泥,利用X射线衍射检测了合成产物的物相组成,采用扫描电子显微镜观察了新型铝酸盐水泥中各物相的形貌和能谱分析了成分分布,测量了这种铝酸盐水泥的凝结时间、耐火度以及其所结合的高铝矾土制成的耐火浇注料的早期强度.选择静态坩埚法进行抗渣性实验,对比了新型铝酸盐水泥和纯铝酸钙水泥结合刚玉浇注料的抗渣性差异.结果表明:这种水泥的物相组成为镁铝尖晶石、一铝酸钙和二铝酸钙;物相分布较为均匀.与纯铝酸钙水泥比较,凝结时间正常,新型铝酸盐水泥结合刚玉浇注料与纯铝酸钙水泥结合刚玉浇注料的抗弯强度相当,耐火度较高和抗侵蚀性较好,其原因在于水泥中存在镁铝尖晶石相,而镁铝尖晶石有较高的熔点和抗熔渣侵蚀能力.  相似文献   

8.
以硫酸法钛白为主体,评述了硫—磷—钛的循环经济模式,硫酸法钛白配套硫酸及磷化工,前者在硫铁矿制酸系统中可以消耗钛白废酸浓缩时产生的一水硫酸亚铁渣,后者可消耗多余的浓缩废酸,解决硫酸法钛白废副综合利用难题,并能获取一定的经济效益。针对目前有硫酸和磷化工的企业推荐了一个硫—磷—钛的佳配方案,并提供了相关工程经验和技术简述。  相似文献   

9.
以硫酸法钛白为主体,评述了硫—磷—钛的循环经济模式,硫酸法钛白配套硫酸及磷化工,前者在硫铁矿制酸系统中可以消耗钛白废酸浓缩时产生的一水硫酸亚铁渣,后者可消耗多余的浓缩废酸,解决硫酸法钛白废副综合利用难题,并能获取一定的经济效益。针对目前有硫酸和磷化工的企业推荐了一个硫—磷—钛的佳配方案,并提供了相关工程经验和技术简述。  相似文献   

10.
利用微硅粉和氯氧镁水泥制备了不同微硅粉掺量的微硅粉-氯氧镁水泥,研究了微硅粉掺量对微硅粉-氯氧镁水泥抗压强度、耐水性和耐硫酸盐腐蚀性能的影响,并对微硅粉-氯氧镁水泥的物相组成和微观形貌进行了分析.结果表明:当n(MgO):n(MgCl2):n(H2O)体系物质的量比为7:1:15时,氯氧镁水泥样品的抗压强度、耐水和耐硫酸盐软化系数分别为78.85 MPa、0.72和0.76;当微硅粉掺量为30%时,其抗压强度、耐水性和耐硫酸盐腐蚀性能达到最佳,抗压强度达到了83.45 MPa,软化系数分别为0.74和0.78;微硅粉-氯氧镁水泥强度和耐水性能提升原因是微硅粉的微集料效应和火山灰特性.此外,使用工业废弃物微硅粉制备微硅粉-氯氧镁水泥可以明显降低氯氧镁水泥材料的制备成本,提高微硅粉的附加值.  相似文献   

11.
以攀枝花某钛白粉厂的工业硫酸氧钛浓钛液为原料,采用外加晶种水解工艺制备水解偏钛酸,通过检测钛液水解过程中浆料透过率的变化间接检测水解过程反应速率的变化,通过分析水解过程不同时间段的偏钛酸粒度分布,确定了影响偏钛酸粒度分布的主要因素。在此基础上考察了钛液浓度、F值、铁钛比、水解晶种加量、熟化搅拌时间对偏钛酸粒度分布的影响。结果表明钛液沸腾后快速水解,再随钛液浓度降低水解速率逐渐降低,浆料粒度逐渐长大,二次沸腾20 min后,浆料的粒度分布逐渐稳定,后期保温过程对粒度分布影响不大;钛液浓度、铁钛比、F值、晶种加量和熟化期间搅拌时间均对偏钛酸粒度分布有影响,D50随着钛液浓度的增加而减小,随F值和铁钛比的增大而增加,随着晶种加量的增加而减小,随熟化期搅拌时间的延长而降低。  相似文献   

12.
为了拓展氯氧镁水泥(MOC)的使用范围,研究了缓凝剂(柠檬酸、硼酸、葡萄糖酸钠)对氯氧镁水泥凝结时间、抗压强度、电阻率、水化热和耐水性的影响,同时采用X射线衍射仪分析了氯氧镁水泥改性后的水化产物。结果表明,掺入缓凝剂会延长氯氧镁水泥的凝结时间,当缓凝剂掺量达到0.75%(质量分数,下同)时,各组试样的28 d抗压强度较空白组分别下降了19.3%、16.7%和20.2%。缓凝剂的掺入降低了水泥浆体电阻率速率曲线和内部温度曲线的峰值,推迟了水化放热速率曲线第二峰值出现时间,即降低了氯氧镁水泥的水化速率,改善了氯氧镁水泥放热集中的现象。缓凝剂能提高氯氧镁水泥的耐水性,当硼酸掺量为0.75%时,软化系数可达到0.79。  相似文献   

13.
在简述钛白废酸生产工业级硫酸镁专利技术的基础上,对硫酸镁的市场进行了分析,说明此专利技术既可解决钛白粉厂的环保问题,又有良好的经济效益。  相似文献   

14.
以铜渣和草酸为原料,按一定比例混合,通过酸碱反应制备铜渣基草酸盐水泥,考察了铜渣与草酸质量比(CS/OA)、水灰质量比(W/C)、缓凝剂种类及掺量对所制水泥力学性能和凝结时间的影响,用扫描电镜和X射线粉末衍射仪分析了水泥的微观形貌和物相组成。结果表明,随质量比CS/OA和W/C增加,水泥的抗压强度呈先增大后减小的趋势,凝结时间随CS/OA增大而减小,随W/C增大而增大。硼砂和三聚磷酸钠对水泥的抗压强度影响较大,随其掺量增加,水泥的力学性能降低,适量的硼酸可提高水泥的抗压强度,且具有较好的缓凝效果,可将硼酸作为较佳缓凝剂。当质量比CS/OA=4和W/C=0.16~0.17、硼酸掺量为2.5wt%时,材料性能最优,养护28 d抗压强度可达38.5 MPa,凝结时间为24 min。水泥主要水化产物是结构密实、结晶良好的柱形FeC2O4?2H2O,添加硼砂和三聚磷酸钠会使水泥出现孔隙,而硼酸会促进水化反应使水化产物结晶更优,且不会破坏水泥的密实度。  相似文献   

15.
钛白废酸的综合利用   总被引:4,自引:4,他引:4  
研究了钛白废酸浸出含锌氧化物料的湿法冶金过程。在此基础上,制得了高品位钛黄、氧化铁红、碱式碳酸锌、活性氧化锌和含锌镁硫酸铵复合肥。最大限度地从含锌氧化物料和钛白废酸中回收了锌、钛和铁,硫酸得到利用,同时对环境不产生污染。  相似文献   

16.
以攀枝花钢铁公司生产的高钛型高炉渣的碳化产物(碳化渣)取代标准砂为集料制备了水泥砂浆。采用X射线衍射仪(XRD)和扫描电子显微镜(SEM)对高钛型碳化渣进行了成分、物相和形貌表征;测试了不同碳化渣含量下水泥砂浆的抗压强度和电阻率,探讨了不同碳化渣取代量对水泥砂浆电阻率的影响机制。研究结果表明,含有碳化渣的水泥砂浆的强度满足建筑水泥砂浆的要求;在潮湿状态下,碳化渣的引入无法降低28 d龄期水泥砂浆的电阻率;在干燥状态下,当碳化渣的取代量达到60%以上时,水泥砂浆的电阻率可低于标准水泥砂浆,且最低可下降87.5%。高钛型碳化渣可作为导电集料的候选材料用于制备面向建筑加热采暖用的水泥基复合导电材料。  相似文献   

17.
中国每年报废上百万吨的废干电池,钛白工业也会产生大量的废硫酸,这不仅浪费了大量的资源,还严重污染了环境。根据废干电池和钛白废硫酸的特点,研究用钛白废硫酸浸出废干电池,通过硫化、氧化加热、置换、水解、氟化等工序净化除杂后,采用共沉淀法制取锰锌铁氧体。产品初始磁导率达8 000 H/m以上,杂质质量分数小于1×10- 4。该工艺以废治废,废物中的主要成分不需相互分离即可制取高附加值的锰锌铁氧体,少量的杂质元素可通过净化脱除并进行处置。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号