首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyhydroxyalkanoates are a type of polymers with a clear renewable origin, as different types of microorganisms can produce them. Unfortunately, their mechanical properties are not usually as good as those of conventional polymers and for a moment their price is relatively higher; these are two of the reasons why it is suggested in the bibliography that they can be employed forming part of blends with conventional polymers. In the present work, blends of a poly(hydroxybutyrate‐valerate) (PHBV) copolymer and a polypropylene resin have been successfully processed using PHBV concentrations up to 20 phr with internal mixer and a hot plate press. Processability and applicability of such blends logically depend on their properties, and for this reason morphology, rheological, thermal properties, and tensile strength for all samples have been evaluated. Ternary blends, incorporating a poly(styrene‐ethylene‐butylene) copolymer have also been obtained and the influence of the blends properties has been analyzed. Results have shown that the rheological behavior and crystallization process of the system is markedly dependent on the blend composition. Although tensile strength significantly decreases with PHBV concentration, the use of low concentrations of the styrene‐ethylene‐butylene‐styrene copolymer could improve the elongation at break to a certain extent. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
Two series of biodegradable polymer blends were prepared from combinations of poly(L ‐lactide) (PLLA) with poly(?‐caprolactone) (PCL) and poly(butylene succinate‐co‐L ‐lactate) (PBSL) in proportions of 100/0, 90/10, 80/20, and 70/30 (based on the weight percentage). Their mechanical properties were investigated and related to their morphologies. The thermal properties, Fourier transform infrared spectroscopy, and melt flow index analysis of the binary blends and virgin polymers were then evaluated. The addition of PCL and PBSL to PLLA reduced the tensile strength and Young's modulus, whereas the elongation at break and melt flow index increased. The stress–strain curve showed that the blending of PLLA with ductile PCL and PBSL improved the toughness and increased the thermal stability of the blended polymers. A morphological analysis of the PLLA and the PLLA blends revealed that all the PLLA/PCL and PLLA/PBSL blends were immiscible with the PCL and PBSL phases finely dispersed in the PLLA‐rich phase. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
The blends of low molecular weight triacetin (TAC) and oligomeric poly(1,3‐butylene glycol adipate) (PBGA) were used as multiple plasticizers to lubricate poly(lactic acid) (PLA) in this study. The thermal and mechanical properties of plasticized polymers were investigated by means of dynamic mechanical analysis and differential scanning calorimetry. Atomic force microscopy (AFM) was used to analyze the morphologies of the blends. Multiple plasticizers were effective in lowering the glass transition temperature (Tg) and the melting temperature (Tm) of PLA. Moreover, crystallinity of PLA increased with increasing the content of multiple plasticizers. Tensile strength of the blends decreased following the increasing of the plasticizers, but increased in elongation at break. AFM topographic images showed that the multiple plasticizers dispersed between interfibrillar regions. Moreover, the fibrillar crystallite formed the quasicrosslinkings, which is another cause for the increase in elongation at break. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1583–1590, 2006  相似文献   

4.
The structure, thermal and mechanical properties of blends of poly(butylene terephthalate) (PBT) and a poly(amino–ether) (PAE) barrier resin obtained by direct injection molding are reported. The slight shift of the glass transition temperatures (Tg) of the pure components when blended is attributed to partial miscibility rather than interchange reactions. Both the small strain and the break properties of the blends were close or even above those predicted by the direct rule of mixtures. The specific volume of the blends appeared to be the main reason for the modulus behavior. The linear values of the elongation at break indicated that the blends were compatible, and were attributed to a combination of good adhesion between the two phases of the blends and the small size of the dispersed phases. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 132–139, 2004  相似文献   

5.
The effect of polyethylene glycol (PEG) on the mechanical and thermal properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends was examined. Overall, it was found that PEG acted as an effective plasticizer for the PLA phase in these microphase‐separated blends, increasing the elongation at break in all blends and decreasing the Tg of the PLA phase. Significant effects on other properties were also observed. The tensile strength and Young's modulus both decreased with increasing PEG content in the blends. In contrast, the elongation at break increased with the addition of PEG, suggesting that PEG acted as a plasticizer in the polymer blends. Scanning electron microscope images showed that the fracture mode of PLA changed from brittle to ductile with the addition of PEG in the polymer blends. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43044.  相似文献   

6.
Naturally amorphous biopolyester poly(3‐hydroxybutyrate‐co‐4‐hydroxybutyrate) (P3/4HB) containing 21 mol % of 4HB was blended with semi‐crystal poly(butylene succinate) (PBS) with an aim to improve the properties of aliphatic polyesters. The effect of PBS contents on miscibility, thermal properties, crystallization kinetics, and mechanical property of the blends was evaluated by DSC, TGA, FTIR, wide‐angle X‐ray diffractometer (WAXD), Scanning Electron Microscope (SEM), and universal material testing machine. The thermal stability of P3/4HB was enhanced by blending with PBS. When PBS content is less than 30 wt %, the two polymers show better miscibility and their crystallization trend was enhanced by each other. The optimum mechanical properties were observed at the 5–10 wt % PBS blends. However, when the PBS content is more than 30 wt %, phase inversion happened. And the two polymers give lower miscibility and poor mechanical properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
New toughened poly(butylene terephthalate) (PBT)/bisphenol A polycarbonate (PC) blends were obtained by melt blending with ethylene–butylacrylate–glycidyl methacrylate copolymer (PTW) and ethylene‐1‐octylene copolymer (POE) in a twin‐screw extruder. The mechanical properties of PBT/PC blends were investigated. The presence of PTW or POE could improve the mechanical properties except for the tensile strength and flexural properties of the PBT/PC blends. However, a combination use of PTW and POE had a strong synergistic effect, leading to remarkable increases in the impact strength, elongation at break, and Vicat temperature and some reduction of the tensile strength and flexural properties. The relationship between mechanical properties and morphology of the PBT/PC/PTW/POE blends was studied. The morphology was observed by scanning electron microscopy and the average diameter of dispersed phase was determined by image analysis, and the critical interparticle distance for PBT/PC was determined. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 54–62, 2006  相似文献   

8.
Novatein thermoplastic protein was extrusion blended with poly(butylene adipate‐co‐terephthalate) (PBAT) in the presence of dual compatibilizers to produce blends with greater energy absorbing properties than pure Novatein. Compatibilizer pairs were Joncryl ADR‐4368 (glycidyl methacrylate‐functionalized) with 2‐methylimidazole (2MI), and poly‐2‐ethyl‐2‐oxazoline (PEOX) with polymeric diphenyl methane diisocyanate (pMDI). Uncompatibilized Novatein/PBAT blends had decreased tensile mechanical properties, attributed to phase separation, and poor interfacial adhesion. PBAT became finely dispersed in both compatibilized systems, but PEOX/pMDI blends showed embrittlement and large Novatein domains, which acted as stress concentrations. Tensile strength and elongation at break for Joncryl/2MI blends did not decrease compared with Novatein, even at 10 wt % PBAT, and impact strength increased threefold. Dynamic mechanical analysis and solvent extraction showed that PBAT coalesced in all systems, at compositions as low as 2 wt %. It was concluded that using Joncryl/2MI as a dual compatibilizer system can successfully produce a morphology that enhances energy absorption during fracture. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45808.  相似文献   

9.
Mitsuhiro Shibata  Yusuke Inoue 《Polymer》2006,47(10):3557-3564
The blends of poly(l-lactide) (PLLA) with poly(butylene succinate) (PBS) and poly(butylene succinate-co-l-lactate) (PBSL) containing the lactate unit of ca. 3 mol% were prepared by melt-mixing and subsequent injection molding, and their mechanical properties, morphology, and crystallization behavior have been compared. Dynamic viscoelasticity and SEM measurements of the blends revealed that the extent of the compatibility of PBSL and PBS with PLLA is almost the same, and that the PBSL and PBS components in the blends with a low content of PBSL or PBS (5-20 wt%) are homogenously dispersed as 0.1−0.4 μm particles. The tensile strength and modulus of the blends approximately followed the rule of mixtures over the whole composition range except that those of PLLA/PBS 99/1 blend were exceptionally higher than those of pure PLLA. All the blends showed considerably higher elongation at break than pure PLLA, PBSL, and PBS. Differential scanning calorimetric analysis of the blends revealed that the isothermal and non-isothermal crystallization of the PLLA component is promoted by the addition of a small amount of PBSL, while the addition of PBS was much less effective.  相似文献   

10.
PPC/PBAT共混复合材料性能的研究   总被引:1,自引:0,他引:1  
王勋林  吴胜先 《塑料科技》2012,40(10):70-73
采用双螺杆挤出机制备了聚碳酸亚丙酯/聚对苯二甲酸-己二酸丁二酯共混复合材料(PPC/PBAT)。考察了PPC、扩链剂和增塑剂用量对该共混材料力学性能和流变性能的影响。研究结果表明:在PPC/PBAT共混体系中,随PPC用量的增加,拉伸强度逐渐提高,而断裂伸长率和熔体流动速率(MFR)不断降低;而扩链剂二苯基甲烷二异氰酸酯(MDI)的引入,改善了PPC与PBAT的相容性,且随着MDI用量的增加,共混材料的拉伸强度和断裂伸长率呈增加趋势,而MFR则持续降低;另外,当体系中加入增塑剂柠檬酸三丁酯后,随其用量的增加,PPC/PBAT共混材料的拉伸强度降低,而断裂伸长率和MFR持续提高。  相似文献   

11.
The melt blending of poly(l ‐lactide) (PLLA) with biodegradable poly(butylene succinate) (PBS) is considered with a view to fine‐tuning its mechanical properties and its degradability. For this purpose, both maleic‐anhydride‐grafted PLLA (PLLA‐g‐MA) and maleic‐anhydride‐grafted PBS (PBS‐g‐MA) were prepared and used as reactive compatibilizers. The influence of PBS melt viscosity on the morphology and mechanical properties of PLLA/PBS blends was studied. Interestingly, the blending of low viscosity PBS with PLLA allows PLLA to be toughened while the use of high viscosity PBS led to PLLA/PBS blends exhibiting co‐continuous morphology. The nanostructure of the co‐continuous blends may be tuned through the joint action of organo‐modified clays and reactive compatibilizers. The effect of PBS on PLLA degradability was also investigated. The accelerated weathering testing of blends reveals that such combination of biodegradable polymers allows their degradability rate to be tailored. It is found that the addition of 20 wt% PBS to PLLA allows the molar mass loss fraction to be doubled after 425 h of testing. © 2014 Society of Chemical Industry  相似文献   

12.
This paper reports the thermal, morphological and mechanical properties of environmentally friendly poly(3-hydroxybutyrate) (PHB)/poly(butylene succinate) (PBS) and PHB/poly[(butylene succinate)-co-(butylene adipate)] (PBSA) blends, prepared by melt mixing. The blends are known to be immiscible, as also confirmed by the thermodynamic analysis here presented. A detailed quantification of the crystalline and amorphous fractions was performed, in order to interpret the mechanical properties of the blends. As expected, the ductility increased with increasing PBS or PBSA amount, but in parallel the decrease in the elastic modulus appeared limited. Surprisingly, the elastic modulus was found properly described by the rule of mixtures in the whole composition range, thus attesting mechanical compatibility between the two blend components. This unusual behavior has been explained as due to co-continuous morphology, present in a wide composition range, but also at the same time as the result of shrinkage occurring during sequential crystallization of the two components, which can lead to physical adhesion between matrix and dispersed phase. For the first time, the elastic moduli of the crystalline and mobile amorphous fractions of PBS and PBSA and of the mobile amorphous fraction of PHB at ambient temperature have been estimated through a mechanical modelling approach. © 2021 The Authors. Polymer International published by John Wiley & Sons Ltd on behalf of Society of Industrial Chemistry.  相似文献   

13.
Blends of poly(L ‐lactic acid) (PLLA) and poly (butylene terephthalate‐co‐adipate) (PBTA) were prepared at ratios of 50 : 50, 60 : 40, and 80 : 20 by melt blending in a Laboplastomill. Improved mechanical properties were observed in PLLA when it was blended with PBTA, a biodegradable flexible polymer. Irradiation of these blends with an electron beam (EB) in the presence of triallyl isocyanurate (TAIC), a polyfunctional monomer, did not cause any significant improvement in the mechanical properties, although the gel fraction increased with the TAIC level and dose level. Irradiation of the blends without TAIC led to a reduction in the elongation at break (Eb) but did not show a significant effect on the tensile strength. Eb of PBTA was unaffected by EB radiation in the absence of TAIC. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

14.
It is still a critical challenge to prepare engineering plastics with multi-functionalities and high-performances while considering their aesthetic properties and dyeing processes. In this study, a light-colored conductive nanorod (CNR) was employed to mediate the morphology of immiscible polypropylene/poly(butylene succinate) (PP/PBS) blends. The CNR could be only located in polar PBS phase to effectively control the viscoelasticity ratio between binary phases. By incorporating just 9 per hundred resins (phr) of CNR, the sea-island structure of PP/PBS (70/30) would transform a stable co-continuous morphology of PP/PBS/CNR (70/30/9). The addition of CNR led to a significant reduction in blends' surface resistivity and volume resistivity. Simultaneously, the mechanical properties and appearance colors of the ternary blends were improved. The effect of CNR in morphological mediation was further verified with PP/poly(butylene adipate terephthalate)/CNR (PP/PBAT/CNR) and PP/poly(ε-caprolactone)/CNR (PP/PCL/CNR) blends. In summary, this work provided a desirable engineering plastic, demonstrating permanent antistatic performance, improved mechanical properties and good colorability.  相似文献   

15.
Triazine‐based hyperbranched polyether was obtained by earlier reported method and blended with low density polyethylene (LDPE) and plasticized poly(vinyl chloride) (PVC) separately to improve some desirable properties of those linear polymers. The properties like processability, mechanical properties, flammability, etc. of those linear polymers were studied by blending with 1–7.5 phr of hyperbranched polyether. The mechanical properties were also measured after thermal aging and leaching in different chemical media. SEM study indicates that both polymers exhibit homogenous morphology at all dose levels. The mechanical properties like tensile strength, elongation at break, hardness, etc. of LDPE and PVC increase with the increase of dose level of hyperbranched polyether. The flame retardant behavior as measured by limiting oxygen index (LOI) for all blends indicates an enhanced LOI value compared to the polymer without hyperbranched polyether. The processing behavior of both types of blends as measured by solution viscosity and melt flow rate value indicates that hyperbranched polyether acts as a process aid for those base polymers. The effect of leaching and heat aging of these linear polymers on the mechanical properties showed that hyperbranched polyether is a superior antidegradant compared to the commercially used N‐isopropyl‐N‐phenyl p‐phenylene diamine. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 648–654, 2007  相似文献   

16.
This study used poly(butylene succinate) and poly(ethylene glycol) to modify poly(3-hydroxybutyrate-co-3-hydroxyvalerate). The results showed that the incorporation of poly(butylene succinate) and poly(ethylene glycol) improved the mechanical properties of blends. The results showed that crystallinity of the poly(ethylene glycol)-containing blends decreased, so do the crystallization temperature and melting temperature of the poly(3-hydroxybutyrate-co-3-hydroxyvalerate) component of blends. Poly(butylene succinate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ethylene glycol) ratio of 50:20:30 was chosen owing to its good properties. The poly(3-hydroxybutyrate-co-3-hydroxyvalerate) component of blends can be degraded completely by Pseudomonas mendocina DS04-T, whereas this strain cannot degrade poly(butylene succinate) and poly(ethylene glycol). Apart from poly(butylene succinate), Fusarium sp. FS1301 can also biodegrade poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(ethylene glycol).  相似文献   

17.
Liquid crystalline polymers (LCPs) are known for their high performance properties. However, owing to their high cost, research efforts are much oriented to their use as reinforcements for different thermoplastics. In this study, we investigated the morphology, mechanical and dynamic rheological properties of blends of a 60/40 para hydroxybenzoic acid–ethylene terephthalate copolyester LCP (PHB/PET) with poly(butylene terephthalate) (PBT), poly(hexamethylene terphthalate) (PHMT), and polycarbonate (PC). Addition of up to 30 wt% of LCP to the different thermoplastics was performed in a Haake Rheomix mixer at 300°C. The dynamic rheological properties of the blends showed significant changes upon the addition of LCP, but no improvement in the mechanical properties was observed. The rheological properties of the blends below the nematic transition temperature of the LCP (210°C) were similar to those of solid filled thermoplastics. At 270°C, at which the LCP is in the nematic phase, the viscosity of LCP blends with PC blends decreased, whereas that obtained with PBT blends was increased. This is interpreted as being due to the differences in viscosity and interfacial tension between the components and to a possible reaction between the LCP and the thermoplastics.  相似文献   

18.
Poly (lactic acid) (PLA) is an important biodegradable plastic with unique properties. However, its widespread application is hindered by its low miscibility and suboptimal degradation properties. To overcome these limitations, we investigated the mechanical, thermal, and degradation properties of PLA and poly (butylene sebacate-co-terephthalate) (PBSeT) blends in the presence of poly (ethylene oxide) (PEO). Specifically, this study aimed to identify the effects of PEO as a compatibilizer and hydrolysis accelerator in PLA/PBSeT blends. PLA (80%) and PBSeT (20%) were melt blended with various PEO contents (2–10 phr), and their mechanical, thermal, and hydrolytic properties were analyzed. All PEO-treated blends exhibited a higher elongation at break than that of the control sample, and the tensile strength was slightly reduced. In the PEO 10% sample, the elongation at break increased to 800% of that of the control sample. Differential scanning chromatography (DSC) analysis confirmed that when PEO was added to the PLA/PBSeT blends, the two glass transition temperatures (Tg) narrowed, resulting in improved miscibility of PLA and PBSeT. In addition, the hydrolytic degradation of the PLA/PBSeT/PEO blend accelerated as the PEO content increased. It was confirmed that PEO can act as a compatibilizer and hydrolysis-accelerating agent for PLA/PBSeT blends.  相似文献   

19.
A series of thermoplastic elastomers (TPEs) were prepared from a binary blend of ethylene propylene diene rubber (EPDM) and isotactic polypropylene (iPP) using different types of phase modifiers. The influence of sulphonated EPDM, maleated EPDM, styrene‐ethylene‐co‐butylene‐styrene block copolymer, maleated PP, and acrylated PP as phase modifiers showed improved physico‐mechanical properties (like maximum stress, elongation at break, moduli, and tension set). Scanning electron and atomic force microscopy studies revealed better morphologies obtained with these phase modified EPDM‐iPP blends. The dependence of the phase modifier type and concentration was optimized with respect to the improvement in physical properties and morphology of the blends. Physical properties, dynamic mechanical properties, and morphology of these blends were explained with the help of interaction parameter, melt viscosity, and crystallinity of the blends. Theoretical modeling showed that Kerner, Ishai‐Cohen, and Paul models predicted the right morphology–property correlation for the prepared TPEs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

20.
Completely biodegradable blends of poly (propylene carbonate) (PPC) and poly(butylene succinate) (PBS) were melt‐prepared and then compression‐molded. The miscibilities of the two aliphatic polyesters, that is, PPC and PBS, were investigated by dynamic mechanical analysis (DMA) and scanning electron microscopy (SEM). The static mechanical properties, thermal behaviors, crystalline behavior, and melt flowability of the blends were also studied. Static tensile tests showed that the yield strength and the strength at break increased remarkably up to 30.7 and 46.3 MPa, respectively, with the incorporation of PBS. The good ductility of the blends was maintained in view of the large elongation at break. SEM observation revealed a two‐phase structure with good interfacial adhesion. The immiscibility of the two components was verified by the two independent glass‐transition temperatures obtained from DMA tests. Moreover, thermogravimetric measurements indicated that the thermal decomposition temperatures (T?5% and T?10%) of the PPC/PBS blends increased dramatically by 30–60°C when compared with PPC matrix. The melt flow indices of the blends showed that the introduction of PBS improved the melt flowability of the blends. The blending of PPC with PBS provided a practical way to develop completely biodegradable blends with applicable comprehensive properties. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号