首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu~(2+)and Cd~(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu~(2+) and Cd~(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g~(-1) and 3.84 mg·g~(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu~(2+) and Cd~(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.  相似文献   

2.
Chemically activated cotton nut shell carbons (CTNSCs) were prepared by different chemicals and they were used for the removal of fluoride from aqueous solution. Effects of adsorption time, adsorbent dose, pH of the solution, initial concentration of fluoride, and temperature of the solution were studied with equilibrium, ther-modynamics and kinetics of the adsorption process by various CTNSC adsorbents. It showed that the chemical y activated CTNSCs can effectively remove fluoride from the solution. The adsorption equilibrium data correlate well with the Freundlich isotherm model. The adsorption of fluoride by the chemical y activated CTNSC is spon-taneous and endothermic in nature. The pseudo first order, pseudo second order and intra particle diffusion kinetic models were applied to test the experimental data. The pseudo second order kinetic model provided a better correlation of the experimental data in comparison with the pseudo-first-order and intra particle diffusion models. A mechanism of fluoride adsorption associating chemisorption and physisorption processes is presented allowing the discussion of the variations in adsorption behavior between these materials in terms of specific surface area and porosity. These data suggest that chemically activated CTNSCs are promising materials for fluoride sorption.  相似文献   

3.
累托石吸附分离水中金霉素(英文)   总被引:1,自引:0,他引:1  
The removal of antibiotics from water by clay minerals has become the focus of research due to their strong adsorptive ability. In this study, adsorption of chlortetracycline (CTC) onto rectories was conducted and the effects of time, concentration, temperature and pH were investigated. Experimental results showed that adsorption equilibrium was reached in 8 h. Based on the Langmuir model, the maximum adsorption capacity of CTC on rectories was 177.7 mg·g 1 at room temperature. By the study on adsorption dynamics, it is found that the kinetic date fit the pseudo-second-order model well. The adsorption of CTC by rectories is endothermic and the free energy is in the range of 10 to 30 kJ·mol 1 . The pH value of solution has significant effects on adsorption and the optimal pH is at acidity (pH 2-6). At concentration of 2500 mg·L 1 , the intercalated CTC produces an interlayer space with a height of 1.38 nm, which is 1.12 nm in raw rectories, suggesting that the adsorption occurs between layers of rectories.  相似文献   

4.
褐煤活性炭吸附苯酚的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
The feasibility and adsorption effect of lignite activated carbon for phenol removal from aqueous solutions were evaluated and investigated. A series of tests were performed to look into the influence of various experimental parameters such as contact time, initial phenol concentration, temperature, and pH value on the adsorption of phenol by lignite activated carbon. The experimental data were fitted well with the pseudo-second-order kinetic model. The adsorption is an endothermic process and conforms to Freundlich thermodynamic model. The results indicate that the lignite activated carbon is suitable to be used as an adsorbent material for adsorption of phenol from aqueous solutions.  相似文献   

5.
Na-A zeolite was synthesized using oil shale ash (OSA), which is a solid by-product of oil shale proc- essing. The samples were characterized by various techniques, such as scanning electron microscopy, X-ray diffrac- tion and Brunaner Emmet Teller method. The batch isothermal equilibrium adsorption experiments were performed to evaluate the ability of Na-A zeolite for removal of Cu (II) from aqueous solutions. The effects of operating pa- rameters, such as concentration of copper solutions, adsorbent dosages, pH value of solutions and temperature, on the adsorption efficiency were investigated. The equilibrium adsorption data were fitted with Langmuir and Freundlich models. The maximum adsorption capacity of Na-A zeolite obtained from the Langmuir adsorption iso- therm is 156.7 mg.g-t of Cu (lI). The increase of pH level in the adsorption process suggests that the uptake of heavy metals on the zeolite follows an ion exchange mechanism. The batch kinetic data fit the pseudo-second order equation well. The thermodynamic parameters, such as changes in Gibbs free energy (AG), enthalpy (AH) and en- tropy (AS), are used to predict the nature of the adsorption process. The negative AG values at different tempera- tures confirm that the adsorption processes are spontaneous.  相似文献   

6.
The steric mass-action (SMA) model has been widely reported in the literature for ion-exchange and metal-affinity interaction adsorption equilibrium of biomacromolecules. In this paper, the usefulness of SMA model is analyzed for describing micromolecule ion-exchange equilibrium onto cation exchangers, CM Sephadex C-25 and Streamline SP. Batch adsorption experiments with ephedrine hydrochloride as a model adsorbate are carried out to determine the model parameters, that is, steric factor, characteristic charge and equilibrium constant. The result shows that the SMA model parameters of micromolecule cannot be obtained using the nonlinear least-square fitting method as protein‘s due to the remarkable difference between the molecular mass and dimension of micromolecule and protein. It is considered that the small size of the adsorbates dealt with in this study justifies the neglect of steric hindrances arising from adsorbate bulkiness. Thus, the three-parameter SMA model is reduced to two-parameter one (i.e., steric factor is equal to zero) for describing micromolecule ion-exchange equilibrium. It is found that the equilibrium constant for CM Sephadex C-25 increases with increasing ionic strength, while the equilibrium constant for Streamline SP shows an opposite trend. This is probably due to the remarkable difference between the physicalpro perties of the two adsorbents. Then, the relationship between the equilibrium constant and ionic strength is described by an expression. The computer simulations show that, the theoretical model with the correlation is promising in the prediction of micromolecule adsorption decrease with increasing ionic strength in a wide range of salt concentration.  相似文献   

7.
The adsorption properties of chitin adsorbent from mycelium of fermentation industries for the removal of heavy metal ions were studied.The result shows that the chitin adsorbent has high adsorption capacity for many heavy metal ions and Ni^2 in citric acid.The influence of pH was significant:When pH is higher than 4.0,the high adsorption capacity is obtained.otherwise H^ ion inhibits the adsorption of heavy metal ions.The comparison of the chitin adsorbent with some other commercial adsorbents was made,in which that the adsorption behavior of chitin adsorbent is close to that of commercial cation exchange adsorbents,and its cost is much lower than those commercial adsorbents.  相似文献   

8.
Supercritical adsorption equilibrium has a significant role in defining supercritical adsorption behavior. In this paper, the adsorption equilibrium of citric acid from supercritical CO2/ethanol on a cyano column was systemat-ical y investigated with the elution by characteristic point method. Equilibrium loading was obtained at 313.15 K and 321.15 K with supercritical CO2/ethanol densities varying from 0.7068 g·cm?3 to 0.8019 g·cm?3. The exper-imental results showed that the adsorption capacity of citric acid decreased with increasing temperature and in-creasing density of the supercritical CO2/ethanol mobile phase. The adsorption equilibrium data were fitted wel by the Quadratic Hill isotherm model and the isotherms showed anti-Langmuir behavior. The monolayer satura-tion adsorption capacity of citric acid is in the range of 44.54 mg·cm?3 to 64.66 mg·cm?3 with an average value of 56.86 mg·cm?3.  相似文献   

9.
In order to decisively determine the adsorption selectivity of zirconium MOF(UiO-66) towards anionic versus cationic species, the adsorptive removal of the anionic dyes(Alizarin Red S.(ARS), Eosin(E), Fuchsin Acid(FA)and Methyl Orange(MO)) and the cationic dyes(Neutral Red(NR), Fuchsin Basic(FB), Methylene Blue(MB),and Safranine T(ST)) has been evaluated. The results clearly reveal a significant selectivity towards anionic dyes. Such an observation agrees with a plethora of reports of UiO-66 superior affinity towards other anionic species(Floride, PO_4~(3-), Diclofenac sodium, Methylchlorophenoxy-propionic acid, Phenols, CrO_4~(2-), SeO_3~(2-), and AsO_4~-). The adsorption process of ARS as an example has been optimized using the central composite design(CCD). The resultant statistical model indicates a crucial effect of both pH and sorbent mass. The optimum conditions were determined to be initial dye concentration 11.82 mg.L~(-1), adsorbent amount 0.0248 g, shaking time of 36 min and pH 2. The adsorption process proceeds via pseudo-second order kinetics(R~2= 0.999). The equilibrium data were fit to Langmuir and Tempkin models(R~2= 0.999 and 0.997 respectively). The results reveal an exceptional removal for the anionic dye(Alizarin Red S.) with a record adsorption capacity of400 mg·g~(-1). The significantly high adsorption capacity of UiO-66 towards ARS adds further evidence to the recently reported exceptional performance of MOFs in pollutants removal from water.  相似文献   

10.
The feasibility of adsorptive removal of single component organic compound(para-chlorophenol) by Calgon Filtrasorb 400(F400) carbon was investigated.The Redlich-Peterson equation was found to be the best fit model for describing the equilibrium relationship between the para-chlorophenol adsorption onto F400 carbon.Four adsorption columns with different column geometry and adsorbent particle stratification were used to examine the adsorption kinetics onto F400 carbons.The Bed Depth Service Time(BDST) model was applied and modified to analyse the performance of the columns and the effect of different operating variables.When combining the effects of adsorption efficiency and the associated pressure drop of each type of adsorption columns tested,the carbon stratified tapered column has been determined to be the most efficient engineering option for removing organics,in which the enhancement of the adsorbent bed in terms of longer breakthrough time and higher saturation percentage is the greatest amongst the four types of columns with reasonably small pressure drop across the fixed-bed column.  相似文献   

11.
The release of heavy metals from the combustion of hazardous wastes is an environmental issue of increasing concern. The species transformation characteristics of toxic heavy metals and their distribution are considered to be a complex problem of mechanism. The behavior of hazardous dyestuff residue is investigated in a tubular furnace under the general condition of hazardous waste pyrolysis and gasfication. Data interpretation has been aided by parallel theoretical study based on a thermodynamic equilibrium model based on the principle of Gibbs free energy minimization. The results show that Ni, Zn, Mn, and Cr are more enriched in dyestuff residue incineration than other heavy metals (Hg, As, and Se) subjected to volatilization. The thermodynamic model calculation is used for explaining the experiment data at 800℃ and analyzing species transformation of heavy metals. These results of species transformation are used to predict the distribution and emission characteristics of trace elements. Although most trace element predictions are validated by the measurements, cautions are in order due to the complexity of incineration systems.  相似文献   

12.
A simple ultrasound-assisted co-precipitation method was developed to prepare ferroferric oxide/graphene oxide magnetic nanoparticles (Fe3O4/GO MNPs). The hysteresis loop of Fe3O4/GO MNPs demonstrated that the sample was typical of superparamagnetic material. The samples were characterized by transmission electron microscope, and it is found that the particles are of small size. The Fe3O4/GO MNPs were further used as an adsorbent to remove Rhodamine B. The effects of initial pH of the solution, the dosage of adsorbent, temperature, contact time and the presence of interfering dyes on adsorption performance were investigated as well. The adsorption equilibrium and kinetics data were fitted well with the Freundlich isotherm and the pseudo-second-order kinetic model respectively. The adsorption process followed intra-particle diffusion model with more than one process affecting the adsorption of Rhodamine B. And the adsorption process was endothermic in nature. Furthermore, the magnetic composite with a high adsorption capacity of Rhodamine B could be effectively and simply separated using an external magnetic field. And the used particles could be regenerated and recycled easily. The magnetic composite could find potential applications for the removal of dye pollutants.  相似文献   

13.
Biodegradation parameters and kinetic characteristics for pre-treating waste strains of Klebsiella pneu-moniae were studied in laboratory scale with an insulated reactor by an innovative technique,autothermal thermo-philic aerobic digestion(ATAD) . Based on an Arrhenius-type equation,an empirical model was developed to corre-late the removal of total suspended solid(TSS) with the initial TSS concentration,influent reaction temperature,aeration rate and stirring rate. The reaction temperatures of the ATAD system could be raised from the ambient temperatures of 25 °C to a maximum temperature of 65 °C. The exponentials for the initial TSS concentration,aeration rate and stirring rate were 1.579,-0.8175 and-0.6549,respectively,and the apparent activation energy was 6.8774 kJ·mol-1. The correlation coefficient for the pre-exponential factor was 0.9223. The TSS removal effi-ciency predicted by the model was validated with an actual test,showing a maximum relative deviation of 10.79%. The new model has a good practicability.  相似文献   

14.
AB-8 resin was used as an adsorbent for the removal of trans-1,2-cyclohexandiol(CHD) from aqueous solutions.Batch experiments were carried out to investigate the effect of contact time and temperature on sorption efficiency.The adsorptive thermodynamic properties and kinetics of CHD from water onto AB-8 resin were studied.The Langmuir and Freundlich isotherm models were employed to discuss the adsorption behavior.Thermodynamic parameters such as G,H and S were calculated.The results indicate that the equilibrium data are perfectly represented by Langmuir isotherm model.Thermodynamic study reveals that it is an exothermic process in nature and mainly physical adsorption enhanced by chemisorption with a decrease of entropy process.The kinetics of CHD adsorption is well described by the pseudo second-order model.The adsorbed CHD can be eluted from AB-8 resin by 5% ethanol aqueous solution with 100% elution percentage.  相似文献   

15.
Municipal wastewater treatment plants typically exhibit two classic problems: high ammonium concen- tration in water after conventional biological treatment and, in some cases, poor activated sludge sediment ability. Potential solutions to these problems were investigated by adding a synthetic zeolite obtained from coal fly ash to different steps of activated sludge treatment. The experimental results for ammonium removal fit well with the theoretical adsorption isotherms of the Freundlich model with a maximum adsorption capacity of 13.72 mg.g-'. Utiliza- tion of this kind of zeolite to improve activated sludge sediment ability is studied for the first time in this work. It is found that the addition of the zeolite (1 g. L-1) to an activated sludge with settling problems significantly enhances its sediment ability and comoact ability. This is confirmed by the sludge volume index (SVI), which was reduced from 163 ml.g-1 to 70 ml.g-r, the V60 value, which was reduced from 894 ml.L-1 to 427 ml.L-1, and the zeta poten- tial (0, which was reduced from -19.81 mV to -14.29 mV. The results indicate that the addition of this synthetic zeolite to activated sludge, as an additional waste management practice, has a positive impact on both ammonium removal and sludge settleability.  相似文献   

16.
The scarcity of water, mainly in arid and semiarid areas of the world is exerting exceptional pressure on sources and necessitates offering satisfactory water for human and different uses. Water recycle/reuse has confirmed to be successful and promising in reliable water delivery. For that reason, attention is being paid to the effective treatment of alternative resources of water (other than fresh water) which includes seawater, storm water, wastewater (e.g., dealt with sewage water), and industrial wastewater. Carbon nanotubes (CNTs) are called the technology of 21st century. Nowadays CNTs have been widely used for adsorption of heavy metals from water/ wastewater due to their unique physical and chemical properties. This paper reviews some recent progress (from 2013 to 2018) in the application of CNTs for the adsorption of heavy metals in order to remove toxic pollutants from contaminated water. CNTs are expected to be a promising adsorbent in the future because of its high adsorption potential in comparison to many traditional adsorbents.  相似文献   

17.
Heat transfer coeffients between an immersed horizontal tube and an aerated vibrated fluldlzed bed are measured. There is a maximum value in the h-Г experlmental curve. The heat trander coefllcient increases with decreases in particle diameter in the fully fluidized region. The particle density has less effect on the heat transfer coetftclents. High smplltude and low frequency, or low amplitude and high frequency are favorable to heat transit. Exceedingly high gas veloclty is unfavorable to the surface-bed heat transfer. A model based on the ‘pocket‘ theory was proposed for predicting the surface-to-bed heat trausfer coefllclents in fully fluldlzed region. The predlctlons from the model were compared with observed data The reasonable fit suggests the adequacy of the model.  相似文献   

18.
Heavy metal pollution from industrial wastewater is a worldwide environmental issue. Biosorption of heavy metals by using biosorbents derived from various types of biomass has been shown to be effective for the uptake of heavy metal ions. In this study, biosorbents derived from the biomass of a group of marine macroalgae were used for the removal and recovery of heavy metal ions from aqueous solutions. Results indicated that the biosorbents have high uptake capacities and affinities for a number of heavy metal ions. The uptake capacities of the biosorbents were in the range of 1.0 to 1.5mmol·g-1 for divalent heavy metal ions. The kinetics of the uptake process was fast and the process can be used in both batch and fixed-bed operations. It appears that the biosorption process by using biosorbents from marine macroalgae can be an efficient and cost effective technology for the treatment of heavy metal containing wastewater.  相似文献   

19.
Modified multi-walled carbon nanotubes (MWCNTs) were used as adsorbents for removal of diclofenac. The re-action conditions were examined. Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich isotherm models were applied to determine appropriate equilibrium expression. The results show that the experimental data fit the Freundlich equation well. Thermodynamic parameters show that the adsorption process is spontaneous and exothermic. The kinetic study indicates that the adsorption of diclofenac can be well described with the pseudo-second-order kinetic model and the process is controlled by multiple steps.  相似文献   

20.
Adsorption equilibrium is of great importance for the preparative supercritical fluid chromatography(pre-SFC) in defining supercritical adsorption behavior and the industrial amplification.This paper presents adsorption isotherms of Z-ligustilide from supercritical carbon dioxide(SC-CO_2) on C18-bonded silica.Adsorption behavior was studied at 305.15 K,313.15 K and 323.15 K with SC-CO_2 density varying from 0.687 g·cm~(-3) to0.863 g·cm~(-3) with the elution by characteristic points(ECP) method.The adsorption amount of Z-ligustilide from SC-CO_2 on C18-bonded silica decreased with the increasing density of the mobile phase as well as the increasing temperature.Adsorption equilibrium data were fitted by Langmuir and Freundlich isotherm models,and the Langmuir isotherm model performed better for describing the whole adsorption process on the column.The monolayer saturation adsorption capacity of Z-ligustilide is in the range of 3.0 × 10~(-4) mg·cm~(-3) to5.5 × 10~(-4) mg·cm~(-3) with an average value of 4.0 × 10~(-4) mg·cm~(-3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号