首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2023,49(7):10280-10286
Using pre-synthesized high-entropy (Ta0.2W0.2Nb0.2Mo0.2V0.2)C carbide as the reinforcing phase, Ti(C0.7N0.3)-based cermets were prepared by pressureless sintering at 1600 °C. The results revealed that due to the solid solution reaction between the mono-carbide and (Ta0.2W0.2Nb0.2Mo0.2V0.2)C, only one set of face-centered-cubic diffraction peaks in XRD was detected in the as-sintered cermets, alongside the typical core-rim structure. Compared to the Ti(C0.7N0.3)-based cermets without high-entropy reinforcing phase, the Vickers hardness was increased from 17.06 ± 0.09 GPa to 18.42 ± 0.33 GPa and the fracture toughness was increased from 9.21 ± 0.31 MPa m1/2 to 12.56 ± 0.23 MPa m1/2 by adding 10 wt% (Ta0.2W0.2Nb0.2Mo0.2V0.2)C. The wear resistance of the cermet was enhanced significantly with increasing (Ta0.2W0.2Nb0.2Mo0.2V0.2)C content. This work provided a potential that the high-entropy carbide can be applied as an effective reinforcing phase in the preparation of high-performance Ti(C0.7N0.3)-based cermets.  相似文献   

2.
《Ceramics International》2020,46(17):26626-26631
A new high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B ceramic with a WB-type orthogonal structure was designed and synthesised by in-situ reactive hot pressing at 2000 °C and 30 MPa for 1.5 h under an argon atmosphere. The microstructure of the sintered samples was comprehensively characterised, and the formation of a high-entropy monoboride (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B ceramic was confirmed. Owing to the high density of the dislocations and strengthening metal-boron bonds, the high-entropy (Mo0.2Ta0.2Ni0.2Cr0.2W0.2)B ceramic exhibited a hardness of 48.51 ± 4.07 GPa, which enabled it to be classed as a new superhard material. In addition, the thermal conductivity (2.05 ± 0.10 W/(m·K) at 400 °C) and electric conductivity (132.30 S/cm) were determined.  相似文献   

3.
Oxidation behavior of high-entropy carbide (Hf0.2Ta0.2Zr0.2Ti0.2Nb0.2)C (HTZTNC) was investigated over temperature range of 1400–1600 °C. Results showed improved oxidation resistance of high-entropy carbide compared with individual carbide ceramics. In oxide layer, Ta2O5 and Nb2O5 were found to be dominant phases at 1400 °C, whereas ZrTiO4 and HfTiO4 were main phases obtained at 1500 and 1600 °C. Moreover, these complex dense oxide layer structures on the surface of HTZTNC at high temperature led to excellent oxidation resistance. The observation of Ti-depleted layer at 1500 and 1600 °C after 20 min of oxidation indicated that oxidation mechanism involved outward diffusion of titanium oxide, which was further confirmed by reoxidation experiments. In sum, these findings are promising for future development of high-entropy ultrahigh temperature ceramics with good oxidation resistance.  相似文献   

4.
The influences of different contents ranging 0–15 wt% of high-entropy boride (HEB) (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 on the mechanical properties of SiC-based ceramics using Al2O3-Y2O3 sintering additives sintered by spark plasma sintering process were investigated in this study. The results showed that the introduction of 5 and 10 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 could facilitate the densification and the grain growth of SiC-based ceramics via the mechanism of liquid phase sintering. However, the grain growth of SiC-based ceramics was inhibited by the grain boundary pinning effect with the addition of 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2. The SiC-based ceramics with 15 wt% (Hf0.2Mo0.2Ta0.2Nb0.2Ti0.2)B2 showed the enhanced hardness (21.9±0.7 GPa) and high toughness (4.88±0.88 MPa·m1/2) as compared with high-entropy phase-free SiC-based ceramics, which exhibited a hardness of 16.6 GPa and toughness of 3.10 MPa·m1/2. The enhancement in mechanical properties was attributed to the addition of higher hardness of HEB phase, crack deflection toughening mechanism, and presence of residual stress due to the mismatch of coefficient of thermal expansion.  相似文献   

5.
In this study, we investigated the cutting performance and wear mechanisms of Ti(C,N)-based cutting tools containing varying weight percentages (0%, 5%, 10%, and 15%) of high-entropy carbide (HEC) (V0.2Nb0.2 Mo0.2Ta0.2W0.2)C phase, when used for turning nodular cast iron. According to the turning test results, the cermet cutting tools containing 0 wt%, 5 wt%, 10 wt%, and 15 wt% HEC phases demonstrated effective cutting lives of 402, 720, 632, and 465 s, respectively. The tool with 5 wt% HEC phase showed the best cutting performance. When cutting nodular cast iron with cermet cutting tools, the main wear mechanisms observed were diffusion, oxidation, adhesion, and abrasion on the flank surface, along with diffusion, oxidation, and abrasion on the rake surface. The results of this study indicated that (V0.2Nb0.2Mo0.2Ta0.2W0.2)C could be adopted as an effective reinforced phase in the cermet cutting tools.  相似文献   

6.
《Ceramics International》2020,46(6):7430-7437
A series of high entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 (Me=Y3+,Nb5+,Ta5+,V5+,Mo6+,W6+) perovskite oxides were synthesized by using a solid state reaction method. Three multiple-cation solid solutions formed pure phase compounds, and only two compounds were sintered into ceramics. Microstructure analysis showed the influence of configurational entropy on phase stability and grain growth. Dielectric measurements showed that the high entropy ceramics possessed decent temperature stability of permittivity from 25 °C to 200 °C, low dielectric loss (<0.002) from 20 Hz to 2 MHz, high resistance and moderate breakdown strength (290 kV/cm, 370 kV/cm). Evidence strongly confirmed that controlling configurational entropy could be a feasible perspective to set up highly tunable perovskite structures and explore novel species of dielectric materials.  相似文献   

7.
In this study, a novel high-entropy carbide-based ceramic cutting tool was developed. The cutting performance of three kinds of high-entropy carbide-based ceramic tools with different mechanical properties for the ISO C45E4 steel were evaluated. Although the pure (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tool exhibited the highest hardness of 25.06 ± 0.32 GPa, the cutting performance was poor due to the chipping and catastrophic failure caused by the low toughness (2.25 ± 0.27 MPa m1/2). The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–15 vol% cobalt cutting tool with highest fracture toughness (6.37 ± 0.24 MPa m1/2) and lowest hardness (17.29 ± 0.79 GPa) showed the medium cutting performance due to the low wear resistance caused by the low hardness. The (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8–7.7 vol% cobalt cutting tool showed the longest effective cutting life of ∼67 min due to the high wear resistance and chipping resistance caused by the high hardness (21.05 ± 0.72 GPa), high toughness (5.35 ± 0.51 MPa m1/2), and fine grain size (0.60 ± 0.15 μm). The wear mechanisms of the cobalt-containing (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)C0.8 ceramic cutting tools included adhesive wear and abrasive wear and oxidative wear. This research indicated that the high-entropy carbide-based ceramics with high hardness and high toughness have potential use in the field of cutting tool application.  相似文献   

8.
A nano dual-phase powder with great sinterability was synthesized by molten-salt assisted borothermal reductions at 1100 °C using B, ZrO2, HfO2, Ta2O5, Nb2O5 and TiO2 powders as raw materials. Single-phase (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 high-entropy ceramic was prepared by spark plasma sintering using the as-synthesized nano dual-phase powder. Oxidation behavior of the (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic was investigated over the range of 30–1400 °C in air and the result indicated that the rapid oxidation of ceramic began at 1300 °C. The phenomenon could be ascribed to the rapid volatilization of B2O3 from oxide scale. A layered structure was formed at the cross section of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2 ceramic after oxidation. The relationship between partial pressures of gaseous metal oxides and oxygen partial pressures was calculated, which inferred that the formation of layered structure could be ascribed to the active oxidation of (Zr0.2Hf0.2Ta0.2Nb0.2Ti0.2)B2, the generation of gaseous metal oxides, their outward diffusion and further oxidation.  相似文献   

9.
A theoretical calculation combined with experiment was used to study high-entropy (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 (HEB-HfTiMoTaNb). The theoretical calculation suggested HEB-HfTiMoTaNb could be stable over a wide temperature range. Then, a novel solvothermal/molten salt-assisted borothermal reduction method was proposed to efficiently pre-disperse transitional metal atoms in a precursor and synthesize (Hf0.2Ti0.2Mo0.2Ta0.2Nb0.2)B2 nanoscale powders at 1573 K for 6 h, which is nearly 300 K lower than previous reports. The characterization results indicated that the as-synthesized nanoscale HEB-HfTiMoTaNb powder was hexagonal single-phase with homogeneous elements distribution and uniform size, and the oxygen content of the particles is 0.97 wt%. Simultaneously, the mechanical properties, anisotropic nature, and thermal properties of HEB-HfTiMoTaNb were investigated by density functional theory (DFT) calculations. The Cannikin's law was adopted to explain the improvement of comprehensive mechanical properties. In addition, a significant reduction of thermal conductivity was observed for HEB-HfTiMoTaNb and it only was 1/15 of the value of HfB2. This work suggests a reliable technique for synthesis of nanosized HEB powders and discovery of high-entropy materials under the guidance of first-principle theory.  相似文献   

10.
《Ceramics International》2022,48(12):17234-17245
The microstructure and mechanical properties of (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 high-entropy boride (HEB) were first predicted by first-principles calculations combined with virtual crystal approximation (VCA). The results verified the suitability of VCA scheme in HEB studying. Besides, single-phase (Hf0.2Nb0.2Ta0.2Ti0.2Zr0.2)B2 ceramics were successfully fabricated using boro/carbothermal reduction (BCTR) method and subsequent spark plasma sintering (SPS); furthermore, the effects of different amounts of B4C on microstructure and mechanical properties were evaluated. Due to the addition of B4C and C, all samples formed single-phase solid solutions after SPS. When the excess amount of B4C increased to 5 wt%, the sample with fine grains exhibited superior comprehensive properties with the hardness of 18.1 ± 1.0 GPa, flexural strength of 376 ± 25 MPa, and fracture toughness of 4.70 ± 0.27 MPa m1/2. Nonetheless, 10 wt% excess of B4C coarsened the grains and decreased the strength of the ceramic. Moreover, the nanohardness (34.5–36.9 GPa) and Young's modulus (519–571 GPa) values with different B4C contents just showed a slight difference and were within ranges commonly observed in high-entropy diboride ceramics.  相似文献   

11.
A novel (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy ceramic was successfully prepared by pressureless sintering at 2200 °C. With increasing content of resin-derived-carbon, the density, and mechanical and thermal properties increased up to a maximum content of 2~4 wt% resin addition, after which further addition was detrimental. All specimens showed high strength (≥347±36 MPa), with the highest value achieving 450±64 MPa, and fracture toughness significantly higher (>20 %) than those of the corresponding monocarbides and Ta0.5Hf0.5C, (Ta1/3Zr1/3Nb1/3)C. The thermal conductivity was approximately equivalent to the lowest value of the corresponding mono-carbides, which was assumed to be due to the lattice distortion effect.  相似文献   

12.
《Ceramics International》2020,46(17):26581-26589
High-entropy metal boron carbonitride ceramic powders including (Ta0.2Nb0.2Zr0.2Hf0.2W0.2)BCN, (Ta0.2Nb0.2Zr0.2Hf0.2Ti0.2)BCN, and (Ta0.2Nb0.2Zr0.2Ti0.2W0.2)BCN, were successfully synthesized via mechanical alloying at room temperature. Results show that for the first step of 10 h milling, the amorphous BCN phases are observed. After 24 h of second step milling, the as-synthesized high-entropy ceramics exhibit a single face-centered cubic solid solution structure with high compositional uniformity from nano-scale to micron-scale. When heated to 1500 °C for 30min in flowing Ar, the as-prepared high-entropy ceramic powders still show relatively high thermal stability; however, some metals oxides like HfO2 and ZrO2 are detected due to the pre-existing oxides on sample surfaces. After heat treatment, some amorphous phases are still retained. This work suggests a new processing route on the synthesis of high-entropy metal boron carbonitride ceramics.  相似文献   

13.
Single phase novel (Ti0.2W0.2Ta0.2Mo0.2V0.2)C0.8 high entropy carbide (HEC) compacts were successfully synthesized by reactive spark plasma sintering of ball milled metal-carbon elemental mixture at temperatures of 1400−1800 °C. X-ray diffraction and element distribution maps indicated single phase carbide formation with lattice parameter ranging from 4.307 Å to 4.312 Å with small amount of TiO2. X-ray energy dispersive spectroscopy (EDS) mapping showed uniform distribution of the transition metals in the carbide phase. The microhardness, elastic modulus, fracture toughness, electrical resistivity and thermal expansion coefficient (25 °C–600 °C) of the compact sintered at 1800 °C were found to be 25.8 ± 2.8 GPa, 461 ± 36 GPa, 3.7 ± 0.4 MPa.m1/2, 7 × 10−4 Ω/m2 and 7 × 10-6 K−1 respectively.  相似文献   

14.
High-entropy transition-metal (IVB–VIB) carbide (HETMC) ceramics consisting of multiple principal components generally correspond to higher configuration entropy, and exhibit better overall performance. However, they also present certain synthesis challenges, for example, in the synthesis of a three-dimensional six-principal-component HETMC aerogel. In the present work, as an example a novel (Ti0.167Cr0.167V0.167Mo0.167Nb0.167Ta0.167)C aerogel was prepared at a relatively low temperature of 1773 K by an in-situ carbothermal reduction/partial sintering technique following the successful preparation of (Ti0.2V0.2Mo0.2Nb0.2Ta0.2)C and (Ti0.2Cr0.2Mo0.2Nb0.2Ta0.2)C five-principal-component HETMC aerogels. The synthesized 6-HETMC aerogel exhibited a homogeneous microstructure with grain phases and pores of 100–300 nm and 0.2–10 μm, respectively, a density of 0.45 g cm−3, a high porosity and compressive strength of 94.5% and 0.8 MPa, respectively, a low thermal conductivity of 0.128 W (m K)−1 at 298 K, and a good high-temperature stability at least up to 1673 K in Ar. This research provided a novel strategy for future development of HETMC ceramic aerogels for high-temperature applications.  相似文献   

15.
《Ceramics International》2022,48(8):11124-11133
A series of rare-earth-tantalate high-entropy ceramics ((5RE0.2)Ta3O9, where RE = five elements chosen from La, Ce, Nd, Sm, Eu and Gd) were prepared by conventional sintering in air at 1500 °C for 10 h. The (5RE0.2)Ta3O9 high-entropy ceramics exhibit an orthogonal structure and sluggish grain growth. No phase transition occurs in the test temperature of 25–1200 °C. The thermal conductivities of all (5RE0.2)Ta3O9 ceramics are in the range of 1.14–1.98 W m?1 K?1 at a test temperature of 25–500 °C, approximately half of that of YSZ. The sample of (Gd0.2Ce0.2Nd0.2Sm0.2Eu0.2)Ta3O9 exhibits a low glass-like thermal conductivity with a value of 1.14 W m?1 K?1 at 25 °C. The thermal expansion coefficient of (5RE0.2)Ta3O9 ceramics ranges from 5.6 × 10?6 to 7.8 × 10?6 K?1 at 25–800 °C, and their fracture toughness is high (3.09–6.78 MPa·m1/2). The results above show that (5RE0.2)Ta3O9 ceramics could be a promising candidate for thermal barrier coatings.  相似文献   

16.
A new high-entropy ceramic (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7 ((5RE0.2)2Si2O7) was proposed as a potential environmental barrier coating (EBC) material for ceramics matrix composites in this work. Experimental results showed that the (5RE0.2)2Si2O7 synthesized by solid-phase sintering was a monoclinic solid solution and had good phase stability proved by no obvious absorption/exothermic peak in the DSC curve from room temperature to 1400 °C. It performed a lower coefficient of thermal expansion (2.08 ×10?6-4.03 ×10?6 °C?1) and thermal conductivity (1.76–2.99 W?m?1?°C?1) compared with the five single principal RE2Si2O7. In water vapor corrosion tests, (5RE0.2)2Si2O7 also exhibited better water vapor corrosion resistance attributed to the multiple doping effects. The weight loss was only 3.1831 × 10?5 g?cm?2 after 200 h corrosion at 1500 °C, which was lower than that of each single principal RE2Si2O7. Therefore, (5RE0.2)2Si2O7 could be regarded as a remarkable candidate for EBCs.  相似文献   

17.
《Ceramics International》2020,46(11):19008-19014
Powders of high-entropy Hf0.2Ta0.2Ti0.2Nb0.2Zr0.2C (HECZr) and Hf0.2Ta0.2Ti0.2Nb0.2Mo0.2C (HECMo) carbides were fabricated through the reactive high-energy ball milling (R-HEBM) of metal and graphite particles. It was found that 60 min of R-HEBM is adequate to achieve a full conversion of the initial precursors into a FCC solid solution for both compositions. The HECZr powder possesses a unimodal particle size distribution (40% d ≤ 1 μm, 95% d ≤ 10 μm), and the HECMo powder features a bimodal distribution with a slightly larger particle size overall (30% d ≤ 1 μm, 80% d ≤ 10 μm). Bulk high-entropy ceramics with a minor presence of an oxide phase were fabricated through the spark plasma sintering of these high-entropy powders at 2000 °C with a 10 min dwelling time. The HECZr ceramics possess a relative density of up to 94.8%, hardness of 25.7 ± 3.5 GPa, Young's modulus of 473 ± 37 GPa, and thermal conductivity of 5.6 ± 0.1 W/m·K. HECMo ceramics with a relative density of up to 93.8%, hardness of 23.8 ± 2.7 GPa, Young's modulus of 544 ± 48 GPa, and thermal conductivity of 5.9 ± 0.2 W/m·K were also fabricated. A comparison of the properties of the HECs produced in this study and those previously reported is also provided.  相似文献   

18.
High-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics, with different carbon contents (x=0.55?1), were prepared by spark plasma sintering using powders synthesized via a carbothermal reduction approach. Single-phase, high-entropy (Ti0.2Zr0.2Nb0.2Ta0.2Mo0.2)Cx ceramics could be obtained when using a carbon content of x=0.70?0.85. Combined ZrO2 and Mo-rich carbide phases, or residual graphite, existed in the ceramics due to either a carbon deficiency or excess at x=0.55 and 1, respectively. With the carbon content increased from x=0.70 to x=0.85, the grain size decreased from 4.36 ± 1.55 μm to 2.00 ± 0.91 μm, while the hardness and toughness increased from 23.72 ± 0.26 GPa and 1.69 ± 0.21 MPa·m1/2 to 25.45 ± 0.59 GPa and 2.37 ± 0.17 MPa·m1/2, respectively. This study showed that the microstructure and mechanical properties of high-entropy carbide ceramics could be adjusted by the carbon content. High carbon content is conducive to improving hardness and toughness, as well as reducing grain size.  相似文献   

19.
In recent years, the microstructure and physicochemical properties of high-entropy ceramics have received much interest by the combination of multiple principal elements. Herein, (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC–(Ti0.2V0.2Cr0.2Nb0.2Ta0.2)C high-entropy ceramics (M2AlC-MC HECs) were prepared by the spark plasma sintering (SPS) technique, attributing to the structural and chemical diversity of MAX phases. The microstructure of M2AlC-MC HECs was characterized from micron to atomic scales, and the phase composition of M2AlC-MC HECs was analyzed by a combination of Maud and Rietveld analysis. The results indicate the successful solid solution of Ti, V, Cr, Nb, and Ta atoms in the M-site of the 211-MAX configuration, and all the samples show a classic layered structure. The weight percentage of (Ti0.2V0.2Cr0.2Nb0.2Ta0.2)2AlC in the M2AlC-MC HECs was more than 90%. Furthermore, the thermoelectric properties of M2AlC-MC HECs were investigated for the first time in this study, and the electrical conductivity and thermal conductivity of HECs are 3278 S cm−1 and 2.78 W m−1 K−1at 298 K, respectively.  相似文献   

20.
High-entropy metal carbides have recently been arousing considerable interest. Nevertheless, their high-temperature oxidation behavior is rarely studied. Herein the high-temperature oxidation behavior of (Hf0.2Zr0.2Ta0.2Nb0.2Ti0.2)C high-entropy metal carbide (HEC-1) was investigated at 1573-1773 K in air for 120 minutes. The results showed that HEC-1 had good oxidation resistance and its oxidation obeyed a parabolic law at 1573-1673 K, while HEC-1 was completely oxidized after isothermal oxidation at 1773 K for 60 minutes and thereby its oxidation followed a parabolic-linear law at 1773 K. An interesting triple-layered structure was observed within the formed oxide layer at 1673 K, which was attributed to the inward diffusion of O2 and the outward diffusion of Ti element and CO or CO2 gaseous products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号