首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 187 毫秒
1.
通过分析入侵检测样本的分布特点,提出了一种多分类SVM增量学习算法.该算法通过衡量同类样本点和样本中心之间的距离来确定用于训练的支持向量,以选择对分类贡献较大的边缘向量进行训练,通过求解多个超平面的方法划分出不同类别样本的区域,实现了多分类的增量学习.在保证检测率的同时,减少了样本学习数量.利用KDDCUP99标准数据集进行测试,证明该算法可以大幅度降低训练的时间和空间复杂度.  相似文献   

2.
为了利用不断积累的网络样本提高故障诊断效能,针对标准支持向量机不直接支持增量学习的问题,提出一种边界偏转覆盖增量支持向量机. 根据违背Karush Kuhn Tucker条件的新增样本在特征空间中可引起原分类边界改变的情况,设计边界偏转覆盖算法预选支持向量再生区作为增量训练工作集,解决了难以确定的非支持向量向支持向量的转化问题. 理论分析和实验结果表明,该方法能有效简化训练工作集,在保证故障诊断精度的同时大幅度提高增量训练效率.  相似文献   

3.
基于壳向量的线性支持向量机快速增量学习算法   总被引:7,自引:0,他引:7  
提出了一种新的基于壳向量的增量式支持向量机快速学习算法.在增量学习的过程中,利用训练样本集中的几何信息,在样本中选取一部分最有可能成为支持向量的样本--壳向量,它是支持向量集的一个规模较小的扩展集,将其作为新的训练样本集,再进行支持向量训练.这在很大程度上减少了求取支持向量过程中的二次优化运算时间,使增量学习的训练速度大为提高.与单纯使用支持向量代表样本数据集合进行增量学习的传统算法相比,使用该算法使分类精度得到了提高.针对肝功能检测标准数据集(BUPA)的实验验证了该算法的有效性.  相似文献   

4.
基于多支持向量机分类器的增量学习算法研究   总被引:1,自引:0,他引:1  
为了将一般增量学习算法扩展到并行计算环境中,提出一种基于多支持向量机分类器的增量学习算法.该算法根据多分类器对新增样本集的分类结果,以样本到分类超平面的平均距离为条件重新构造支持向量集更新分类器,直到所有分类器的分类精度满足指定阈值.实验结果表明了该算法的可行性和正确性.  相似文献   

5.
针对支持向量机训练样本冗余导致训练效率低下的问题,提出一种基于Fisher向量投影的支持向量机增量算法。该算法根据支持向量机中支持向量的分布特性对初始训练集及增量集进行预处理,减少训练样本个数;通过判断初始样本是否满足新增样本集的卡罗需-库恩-塔克(Karush-Kuhn-Tucker conditions,KKT)条件,剔除对最终结果无用的样本,减少参与训练的样本数目。实验结果表明,与标准支持向量机算法和基于向量投影的支持向量机增量算法相比,基于Fisher向量投影的支持向量机增量算法的训练速度分别提升了86%和33%左右。该方法可用于大规模样本集的分类识别问题。  相似文献   

6.
改进的球结构SVM多分类增量学习算法   总被引:1,自引:0,他引:1  
针对球结构支持向量机(support vector machine,SVM)增量学习算法在训练时间和分类精度上的不足,提出了一种改进的球结构SVM多分类增量学习算法.该算法首先构造一个完全二叉树用于多类分类;分析新增样本的加入对原支持向量集的影响,将新增样本集中部分样本和原始训练集中的支持向量以及分布在球体一定范围内的样本合并做为新的训练集,完成分类器的重构.实现通过减少训练样本缩短训练时间和完善分类器提高分类精度的目的.通过UCI标准数据集实验,结果表明,该算法在所需训练的样本数、训练时间以及准确率3方面都优于球结构SVM增量学习算法,尤其当样本分布不平衡时,该算法有更高的分类准确率.  相似文献   

7.
运用OPTICS算法能发现任意形状的聚类,且对输入参数不敏感的优势,提出一种基于OPTICS密度聚类的支持向量机算法,通过对原始数据进行预处理,利用可达图得到约简样本代替原始训练样本用支持向量机进行训练,降低了SVM训练所需的时间及空间复杂度.实验表明,该方法在保持分类精度的同时,大大缩短了训练时间,提高了分类效率.  相似文献   

8.
为加快支持向量域描述(SVDD)的训练速度,提出基于约减集的约简支持向量域描述算法RSVDD.由于描述边界仅由支持向量决定,且支持向量多分布在描述边缘附近,该算法采用每个样本到中心的距离作为支持向量的一种可能性度量,选取距离较大的部分样本作为约减集参与SVDD训练.人造数据和基准集数据上的仿真实验表明了RSVDD的有效性和优越性,保证了目标类和奇异值类的分类精度,缩减了训练规模和训练时间.  相似文献   

9.
为了提高算法聚类精度,降低算法聚类耗时,根据支持向量聚类算法的统计性原理本文提出了一种改进的支持向量聚类算法。该算法通过预处理数据,提高样本质量;成功解决内部支持向量点扰乱提取簇轮廓的问题;利用支持向量点寻找局部最优点,采用SEP进行成对抽样确定簇标签。理论分析和仿真结果表明,改进算法有效的提高了聚类精度高,降低了算法的复杂度,取得了良好的聚类效果  相似文献   

10.
支持向量机的快速分类算法   总被引:3,自引:0,他引:3  
支持向量机(SVM)算法在训练集的规模很大特别是支持向量很多时,支持向量机的学习过程需要占用大量的内存,算法的速度较慢。为此,笔者提出一种新的SVM快速分类算法。该算法通过选择边界向量,构造新的训练样本,减少了参与训练的样本数目。实验证明,该算法不仅能保证原算法的精度,具有良好的推广能力,而且提高了算法的速度。  相似文献   

11.
一种改进的加权边界调节支持向量机算法   总被引:1,自引:0,他引:1  
为了改进现有支持向量机所确定的边界抗干扰能力差、对噪声数据敏感等问题,减少野点数据对形成支持向量机边界存在的影响,根据各个样本在整个训练样本集中的重要性不同,将各个训练样本的重要性程度值作为权值赋予边界值上,提出了一种基于加权边界调节的支持向量机算法.通过对标准UCI数据集和人工数据集上的仿真实验表明,基于加权边界调节的支持向量机具有较好的野点免疫能力,具有更高的分类精度、更少的支持向量和更好的推广能力.  相似文献   

12.
为了扩展支持向量机在大规模数据集和成批出现数据领域的应用,提出了一种基于支持向量机的增量式学习算法.利用标准的支持向量机算法训练得到初始的目标概念,通过增量式步骤不断更新初始的目标概念.更新模型是求解一个与标准支持向量机具有类似的数学形式的凸二次规划问题.证明了在可分情况下,如果新增加的样本不是位于边界区,那么增量式过程既不会改变分类平面也不会改变分类平面的表达.与现有的增量式支持向量机算法相比,该算法无需额外计算就可实现增量式的逆过程并且训练时间与增量式步骤数成反比.实验结果表明,该算法满足稳定性、能够不断改进性能以及性能回复三个准则.  相似文献   

13.
针对传统的增式支持向量机算法在计算时间和分类效率上的不足,提出了一种新型的增式SVM训练算法。该算法不是简单地保留上一步训练的支持向量,而是通过增加KKT(Karush-Kuhn-Tucke)限制条件并对决策函数的输出设定一个阈值,使得保留下来的样本都是最有效的样本,从而可减少训练样本的数目。在仿真实验中,选择了一组UCI数据,并选用RBF核函数作为核函数。实验结果表明:与传统增式算法相比,新算法在保证传统SVM性能的同时,在迭代速度和分类放率上分别提高了14%和4.39%。  相似文献   

14.
针对样本总体分布已知的分类问题,提出了一种新的分类方法.通过非线性映射将训练样本映射到高维特征空间,基于向量投影法从训练样本中选择边界向量,运用多维二叉树搜索法确定每个边界向量同类中的k-近邻,运用统计理论中的大数定理估计样本的类条件概率密度函数,由边界向量与相应的密度函数构成新的训练样本对.对每一类数据建立一个径向基函数(RBF)网络,以相应类的边界向量作为中心,通过训练以RBF网络来估计样本的类条件概率密度,并采用基于最小错误率的贝叶斯决策来实现分类.对机器学习数据的仿真研究结果表明该方法具有与支持向量机(SVM)相似的识别率,并且能快速有效地实现多类分类.  相似文献   

15.
为了解决现有维数约简算法受样本分布影响较大、不支持小样本学习等问题,在分析线性鉴别分析(LDA)中最优鉴别向量与支持向量机(SVM)中分类超平面法向量之间关系的基础上,基于统计不相关最优鉴别向量集优于正交最优鉴别向量集的事实,提出了通过对改进的SVM的二次优化问题进行递归求解来获取具有统计不相关性的最优边界鉴别向量集的算法,并使用核方法将其推广到可以解决非线性特征抽取问题.结果表明:在采用相同参数并使用k-最近邻分类器进行训练和测试的情况下,提出的算法对实际数据集Waveform,Heart,Diabetis的分类精度均高于SVM和RSVM,不会出现当抽取超过最优维数时随着抽取维数的增加分类精度反而降低的现象,体现了本算法在抽取不相关特征向量方面的有效性.  相似文献   

16.
基于模糊支持向量机的医学图像分类技术   总被引:1,自引:0,他引:1  
对每一个训练点都定义点模糊度,利用其隶属函数所包含的信息量来确定模糊度,在此基础上对传统的支持向量机算法进行了改进,提出了基于模糊支持向量机的医学图像分类技术。采用不同噪声图像进行的试验结果表明,模糊支持向量机方法能够较好地对MRI图像中脑组织进行分类,并且具有较高的精度。使用该方法还可以减少计算量,提高运算速度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号