首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 90 毫秒
1.
In order to get a homogenous mixture and compact of TiB2-Al2O3, hybridization as a surface modification method was used to prepare nano-scale Al2O3 coated TiB2 particles. PE-wax particles were first coated onto TiB2 particles by hybridization, and then the nano-scale Al2O3 particles were coated onto the surface of TiB2 coated by PE-wax particles again. SEM, TEM and EDS were used to characterize the microstructure of as-received core/shell particles and its compacts. The experimental results show that a particle-scale homogenous dispersion of TiB2 and Al2O3 can be formed not only in mixed powder but also in dewaxed compacts. The compacts then were sintered by gas-pressing sintering (GPS). Finial products show improved mechanic properties comparing with reference samples fabricated by normal ways.  相似文献   

2.
Al2O3/TiAl composites were successfully fabricated by hot-press-assisted exothermic dispersion method with elemental powder mixtures of Ti, Al TiO2 and Nb2O5, and the microstructure and mechanical properties were investigated. The results indicate the fine Al2O3 particles tend to disperse on the grain boundaries. The grain size of TiAl matrix decreases and the hardness increases with increasing Nb2O5 content. The bending strength and fracture toughness reach to a maximum when Nb2O5 content is 6 wt%, under 642 MPa and 6.69 MPa·m1/2, respectively. Based on the fractography and the observation of crack propagation path, it is concluded that the strengthening and toughening of such composites at room temperature can be attributed to the refinement of the TiAl matrix, the deflection behavior in the crack propagation and the dispersion of Al2O3 particles.  相似文献   

3.
TiB2-Al2O3 composite powders were produced by self-propagating high-temperature synthesis(SHS) method with reductive process from B2O3-TiO2-AI system. X-ray diffraction(XRD) and scanning electron microscopy(SEM) analyses show the presence of TiB2 and Al2O3 only in the composite powders produced by SHS. The powders are uniform and free-agglomerate. Transmission electron microscopy (TEM) and high resolution electron microscopy (HREM) observation of microstructure of the composite powders indicate that the interfaces of the TiB2-Al2O3 bond well, without any interfacial reaction products. It is proposed that the good interfacial bonding of the composite powders can be resulted from the TiB2 particles crystallizing and growing on the Al2O3 particles surface with surface defects acting as nucleation centers.  相似文献   

4.
Three series of Al2O3/Al laminated ceramic matrix composites,named SPA,SPV and HP,were fabricated by different methods.SPA and SPV were prepared using Al2O3 slices and Al slurry via screen printing and subsequent heat treatment in air or vacuum.HP samples were made by hot pressing the layered stack of Al foils and Al2O3 slices.SEM and XRD were applied to analyze the microstructure and the interlayer crystal phase.The bending strength,fracture toughness and fracture work of the samples made by the three methods were measured and compared.The results show that the composites have much better toughness and higher fracture work than the Al2O3 slice.Among the samples made by the three methods,the samples made by hot pressing have the optimum mechanical performance.The displacement-load curves and fracture mechanism were analyzed.  相似文献   

5.
Composite powders of nanocrystalline WC-10Co (15wt%),Y2O3 (8mol%) stabilized nanocrystalline ZrO2 (30wt%),industrial cobalt powder (4.5wt%) and submicron Al2O3 (55wt%) composite powders were fabricated by high-energy ball-milling process.The nanocomposite powders were consolidated by microwave sintering process at temperature ranged 1300℃-1550℃ for 15min,respectively.The optimum consolidation conditions,such as temperature,were researched during microwave sintering process.Vickers Hardness of the consolidated cermets was measured by using a Vickers indentation test,and density of specimens was also determined by Archimedes’ principle.Microwave sintering process could not only increase the density of Al2O3-ZrO2-WC-Co cermets and reduce the porosity,but also inhibit abnormal grain growth.  相似文献   

6.
Al18B4O33 whisker was coated by SnO2 particles using a chemical precipitation method, and an aluminum matrix composite reinforced by the coated whisker was fabricated by squeeze casting technique. It is found that the SnO2 coating can react with aluminum matrix during squeeze casting process, and Sn particles are induced near the interface between Al18B4O33 whisker and matrix. The tensile test at room temperature indicated that the tensile strength of Al18B4O33 whisker reinforced aluminum matrix composite can be enhanced by suitable content of SnO2 coating. The composites with various whisker coating contents exhibit maximum tensile plasticity at about 300 ℃, and the composite with a suitable whisker coating content could enhance its tensile plasticity evidently, which suggest that an Al18B4O33 whisker-Al composite with both high strength at room temperature and high formability at elevated temperature can be designed.  相似文献   

7.
Since their discovery by Iijima[1], carbon nanotubes (CNTs) have been the focus in novel materials research. Theoretical and experimental studies show[2-9] that CNTs have extraordinary mechanical and electrical properties. Krishnan et al.[2] have reported that the mean value of Young’s modulus of single-wall nanotubes (SWNTs) is 1.25 TPa. Yu et al.[3] measured Yang’s modulus of multi-wall nanotubes (MWNTs) between 270 and 950 GPa and breaking strength between 11 and 63 GPa. The ele…  相似文献   

8.
Ti3SiC2/TiB2 composite was successfully obtained by hot pressing Ti/TiC/Si/B4C power mixtures.Volume fraction of TiB2 in Ti3SiC2/TiB2 composite can not exceed 10%.Incorporation of excessive TiB2 will affect the reactions process.TiC and Ti5Si3 were two important intermediate phases during the whole reactions.The microstructure characteristics of the Ti3SiC2/TiB2 composites were analyzed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).The experimental results show that the grains of Ti3SiC2/TiB2 composite are structured in a layered form,and the formation of TiB2 particles as reinforcements with elongated or equiaxed shape distributes in Ti3SiC2 matrix.  相似文献   

9.
Porous SiO2-Si3N4 composite ceramics with high porosity and excellent mechanical properties were fabricated by pressureless-sintering at relatively low temperature of 1 500 °C using diatomite as pore forming agent. The effects of diatomite on flexural strength, fracture toughness, shrinkage, porosity and phase transformation of the porous ceramics were investigated in detail. Compared with that of the ceramic without adding diatomite, the porosity of the ceramic with 10% diatomite is increased by about 27.4%, the flexural strength and fracture toughness reaches 78.04 MPa and 1.25 MPa·m1/2, respectively. As the porosity increases, the dielectric constant of porous SiO2-Si3N4 ceramic decreases obviously from 3.65 to 2.95.  相似文献   

10.
The composition, microstructures and properties of SiC/Al2O3/Al-Si composites formed by reactive penetration of the molten aluminum into the preforms of SiO2 and SiC were investigated. The composition of the composites was measured by X-ray diffraction ( XRD ). The microstructures of the composites were also measured by scanning electron microscopy (SEM) and optical microscopy. In addition, the factors affecting the properties of the composites were discussed. The experiments show that the mechanical properties of the composites depend on their relative densities and the sizes of the fillers“ SiC gains“. The denser the SiC/Al2O3/Al-Si composites, the higher their bending strength. As the filler “SiC gains“ become fine, the bending strength of the composites increases.  相似文献   

11.
12.
The oxidation behavior of Al2O3/TiAl in situ composites fabricated by hot-pressing technology was investigated at 900° in static air. The results indicate that the mass gains of the composites samples decrease gradually with increasing Nb2O5 content and the inert Al2O3 dispersoids effectively increase the oxidation resistance of the composites. The higher the Al2O3 dispersoids content, the more pronounced the effect. The primary oxidation precesses obey approximately the linear laws, and the cyclic oxidation precesses follow the parabolic laws. The oxidized sample containing Ti2AlN and TiAl phases in the scales exhibits excellent oxidation resistance. The oxide scale formed after exposure at 900°C for 120 h is multiple-layered, consisting mainly of an outer TiO2 layer, an intermediate Al2O3 layer, and an inner TiO2+Al2O3 mixed layer. From the outer layer to the inner layer, TiO2+Al2O3 mixed layer presents the transit of Al-rich oxide to Ti-rich oxide mixed layer. Near the substrate, cross-section micrograph shows a relatively loose layer, and micro- and macro-pores remain on this layer, which is a transition layer and transferres from Al2O3+TiO2 scale to substrate. The thickness of oxide layer is about 20 μm. It is also found that continuous protective alumina scales can not be observed on the surface of oxidation scales. Ti ions diffuse outwardly to form the outer TiO2 layer, while oxygen ions transport inwardly to form the inner TiO2+Al2O3 mixed layer. Under long-time intensive oxidation exposure, the internal Al2O3 scale has a good adhesiveness with the outer TiO2 scale. No obvious spallation of the oxide scales occurs. The increased oxidation resistance by the presence of in situ Al2O3 particulates is attributed to the enhanced alumina-forming tendency and thin and dense scale formation. Al2O3 particulates enhance the potential barrier of Ti ions from M/MO interface to O/MO interface, thereby the TiO2 growth rate decreases, which is also beneficial to improve the oxidation resistance. Moreover, the multi-structure of the TiO2+Al2O3 mixed layer decreases the indiffusion of oxygen ions and also avails to improve the high temperature oxidation resistance of the as-sintered composites. Supported by the Special Program for Education Bureau of Shaanxi Province, China (Grant No. 08JK240) and Scientific Research Startup Program for Introduced Talents of Shaanxi University of Technology, China (Grant No. SLGQD0751)  相似文献   

13.
The structure and properties of the glass-ceramics were tested with X-ray diffraction testing instrument,correlative software,and other modern testing means.Then the effect of Al2O3 content on internal stresses in CaO-Al2O3-SiO2 glass-ceramics was studied deeply.In order to study the relationship of Al2O3 to the residual stress of CaO-Al2O3-SiO2 glass-ceramics,X-ray diffraction "sin2ψ" was used.The means utilized the x radial incidence produced from cathode radial tube,and took the space between crystals as measurement of strain.When the stresses produced,the space between crystals changed and the diffraction peak moved during Bragg diffraction.The magnitude of movement is related to the stresses.The experimental results show the residual stress is considerably high and Al2O3 can influence the mechanical properties of this material hugely.  相似文献   

14.
Al2 O3/Al composite was fabricated by the reaction between SiO2 and molten aluminum. The microstructures of the composite obtained under different reaction conditions were analyzed. The formation mechanism of the composite microstructure was discussed. Results show that the reaction kinetics is influenced remarkably by the reaction temperature, reaction time and the quantity of SiO2. The morphologies of Al2O3 have different features, depending on the reaction temperature. The composite has equaxed Al2O3 grains when materials reacted below 1200°C, and the composite is composed of a large number of fine Al2O3 grains and aluninum. The composite has a frame-shaped Al2O3 microstructure at the reaction temperature of above 1250°C. CHENG Xiao-min: Born in 1964 Funded by the National Natural Science Foundation of China (No. 91522)  相似文献   

15.
The influence of Mo on the microstructure, bending strength and HV of Ti/Al2O3 composite was studied, and the influence mechanism was analyzed. The results indicate that after the addition of Mo, the composite organization is finer and phases distribution is better-proportioned which make the microstructure denser, the bending strength and HV of composite are also increased to a degree. But the bending strength increases first then decreases with the increasing of Mo content, so the appropriate Mo content for the Ti/Al2O3 composite is to be further confirmed. WANG Zhi: Born in 1962 Funded by Natural Science Foundation of China (No. 50232020) and Natural Science Foundation of Shandong Province (No. 2002F21)  相似文献   

16.
Dense and submicron-grained NiAl-Al2O3 composite was fabricated by pulse current auxiliary sintering(PCAS).Its microstructure was analyzed by XRD,SEM and TEM,and its mechanical behavior was evaluated through compression test and fracture toughness test.The average grain sizes of NiAl and Al2O3 are about 200 nm and 100 nm respectively.The Al2O3 particles dispersed in NiAl matrix,forming intergranular structure and intragranular structure.During sintering,Al2O3 particles were remarkably spherized due to the unique sintering mechanism of PCAS,which is beneficial to the improvement of toughness.The NiAl-Al2O3 composite exhibits high compressive yield strength,whether at room temperature or elevated temperature.Its room-temperature(23 ℃) and elevated-temperature(1 200 ℃) compressive yield strength are up to 2 050 MPa and 140 MPa,respectively.Meanwhile,its fracture toughness is significantly enhanced,which is up to 8.2 MPa?m1/2.It is suggested that the main strengthening-toughening mechanisms are grain refinement strengthening and Al2O3 dispersion strengthening.The fracture of larger NiAl grain is the transgranular cleavage and this is induced by crack tip deflection and grain boundary weakening which are caused by intergranular and intragranular Al2O3 particles,respectively.  相似文献   

17.
Nano fluorescent powder of Y4Al2O9: Eu3+ was synthesized by sol-gel method. The XRD shows that the product prepared at 900°C is pure-phase Y4Al2O9: Eu3+. The Y4Al2O9 powder is nano-size crystal testified by BF and ED analysis of TEM. The grain diameter of Y4Al2O9 is in the range between 20 and 50nm, and its average is 30 nm. The luminescent spectra show that Eu3+ ious occupy two kinds of sites in Y4Al2O9 crystal lattice. One is in the strict inversion center, and the other is in off lying inversion center. When excited with UV light (λ=254nm), Y4Al2O9: Eu3+ exhibits an orange emission bond at λ=590 nm due to the5Do7F1 transition and a red emission band at λ=610 nm due to5Do7F2 transition. YUAN Xi-ming: Born in 1951 Funded by Key Scientific and Technological Project of Hubei Province (2001 AA102A03)  相似文献   

18.
Two types of secondary emitter materials, the rare earth oxides (RE2O3) doped Mo cermet cathodes and the Y2O3-W matrix pressed cathode, are introduced in this paper. According to the calculation results, Y2O3 exhibits the best secondary emission property among Y2O3, La2O3, CeO2 and Lu2O3. The rare earth oxides co-doped Mo cathodes in which Y2O3 is the main active substance exhibit better secondary emission property than single RE2O3 doped Mo cathode. The results obtained by the Monte-Carlo calculation method show that the secondary electron emission property is strongly related to the grain size of the cathode. The decreasing of the grain size reduces the positive charge effect of the rare earth oxide due to the electrons supplement from the metal to the rare earth oxide, whereby the secondary electrons are easier to escape into the vacuum. Y2O3 is introduced into Ba-W cathode to fabricate a pressed Y2O3-W matrix dispenser cathode. The result indicates that the secondary emission yield of the Ba-W cathode increases from 2.13 to 3.51 by adding Y2O3, and the thermionic emission current density (J 0) could reach 4.18 A/cm2 at 1050 °Cb.  相似文献   

19.
To improve the cyclic stability at high temperature and thermal stability, the spherical Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 was synthesized by a modified co-precipitation method, and the physical and electrochemical properties were studied. The TEM images showed that Li(Ni0.5Co0.2Mn0.3)O2 was modified successfully with nano-Al2O3. The discharge capacity retention of Al2O3-modified Li(Ni0.5Co0.2Mn0.3)O2 maintained about 99% after 200 cycles at high temperature (55 °C), while that of the bare one was only 86%. Also, unlike bare Li(Ni0.5Co0.2Mn0.3)O2, the Al2O3-modified material cathode exhibited good thermal stability.  相似文献   

20.
Thermal energy storage is an attractive option for effectiveness since it gives flexibility and reduces energy consumption and costs. New composite materials for storage and transformation of heat of NaCl-Al2O3 composite materials were synthesized by one-step synthesis method. The chemical composition, morphology, structure, and thermal properties were investigated by XRD, EDS, SEM, and DSC. The results show that NaCl can be absorbed by Al2O3 particle from 800 to 900 °C for Al2O3 particle surface is rich active structure. The results also indicate that the leakage of NaCl when the phase change can be prevented by Al2O3 particles and the enthalpy of phase change of NaCl-Al2O3 material is 362 J/g. The composites have an excellent heat storage capacity. Therefore, this study contributes to one new thought and method to prepare high temperature heat storage material and this material can be applied in future thermal engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号