首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用化学沉积法制备Li4Ti5O12/Sn O2复合材料,讨论了Sn O2的含量对负极材料电化学性能的影响.通过X射线衍射(XRD)、扫描电镜(SEM)、恒流充放电测试对材料进行结构、形貌及电化学性能表征.结果表明:复合材料中的Sn O2不会改变钛酸锂的尖晶石结构和形貌,当Sn O2质量分数为5%时,材料的电化学性能最优;电压在1~3 V,进行恒流充放电测试,结果表明:0.1 C倍率时,Li4Ti5O12的首次放电比容量为167.83 m Ah/g,而5%复合材料的首次放电比容量为178.21 m Ah/g.  相似文献   

2.
以过硫酸铵为氧化剂,三氯化铁作为掺杂剂,采用原位聚合法制备石墨烯/聚乙撑二氧噻吩纳米复合材料.通过扫描电镜(SEM)、透射电镜(TEM)、红外(IR)光谱对样品的形貌及结构进行表征.结果表明:聚乙撑二氧噻吩纳米颗粒在石墨烯片层上呈均匀分散状态.循环伏安测试法(CV)等电化学测试表明:随着石墨烯质量分数的增加,纳米复合材料电极的电化学性能随之改善,当石墨烯的质量分数为50%时,石墨烯/聚乙撑二氧噻吩纳米复合材料的比电容达到168.8 F/g,显示出较好的电化学活性.  相似文献   

3.
为了提高TiO_2的导电性和材料的分散性,进而提高材料的倍率性能和循环性能,将二氧化钛与石墨烯复合,通过水热法合成了二氧化钛/石墨烯(TiO_2/rGO)复合材料,并对材料的形貌进行了表征,测试了材料用于锂离子电池的电化学性能.结果表明:与石墨烯复合后材料的比容量和倍率性能均升高,在电流密度为0.1C(C=150 mA/g)下,初始放电容量为374 mAh/g,50周后的放电比容量仍保持在165 mAh/g,循环保持率为44%,远高于同种方法下合成的二氧化钛样品50周后的比容量50 mAh/g和保持率17%.  相似文献   

4.
为改善SnO_2作为锂离子电池负极材料的电化学表现性能,利用溶剂热法制备SnO_2纳米颗粒,通过球磨法将SnO_2与多孔导电碳和石墨烯掺杂制得SnO_2/石墨烯/多孔碳复合材料,并研究了掺杂不同比例多孔碳的复合材料的电化学性能。结果表明:含15.79%多孔碳的SnO_2/石墨烯/多孔碳复合材料性能最好,初始可逆容量达1 221 m Ah·g~(-1);拥有良好的循环稳定性,在200 m A·g~(-1)电流密度下循环50次后,放电容量维持在834 m Ah·g~(-1);在100,200,400,800,1 600 m A·g~(-1)电流密度下,放电容量分别为1 221,1 093,993,796,526 m Ah·g~(-1),表现出良好的倍率性能。适量的多孔碳结合层状石墨烯形成特殊的物理结构,强化了SnO_2在充放电过程中的结构稳定性,进而提高了其电化学循环稳定性;石墨烯/多孔碳复合材料的掺杂提高了锂离子电池负极材料SnO_2的导电性,同时提高了其电化学性能。  相似文献   

5.
采用固相合成方法制备了双层碳包覆Li_4Ti_5O_(12)复合材料.通过X射线衍射、扫描电子显微镜、循环伏安、电化学阻抗和恒流充放电分析等测试,研究了产物的结构、形貌及电化学性能.结果表明:通过碳包覆改性后,Li_4Ti_5O_(12)的容量可明显提高,碳的包覆对Li_4Ti_5O_(12)的结构没有影响;2 C倍率下首次放电比容量为118.8 mAh/g,300次循环后放电比容量仍为108.5 mAh/g,容量保持率为91.3%,具有非常好的电化学性能.  相似文献   

6.
采用固相配位法制得石墨烯包覆的Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2富锂层状正极材料。用X射线衍射、场发射扫描电镜、循环伏安、恒流充放电和电化学阻抗谱等分析技术对其相组成、微结构和电化学性能进行表征。结果表明:石墨烯包覆Li_(1.2)Mn_(0.54)Ni_(0.13)Co_(0.13)O_2材料的电化学性能显著提高,该材料在电流密度为20 mA/g(0.1C)和1 000 mA/g(5C)时的放电比容量分别为240,132 mAh/g;在电流密度为200 mA/g(1C)时,充放电循环100次后,其比容量保持率为84%。  相似文献   

7.
利用低温液相法合成了钒酸锂-多壁碳纳米管(LiV_3O_8-(w)MWCNTs)(w分别为0、1%、2%、3%、4%和5%)复合正极材料.采用X-射线衍射(X-ray diffraction,XRD)和扫描电镜(scanning electron microscope,SEM)对复合材料的晶型和结构进行了表征.XRD分析结果表明,复合材料仍为单斜晶系;SEM图谱显示,LiV_3O_8材料附着在MWCNTs的网状结构上,且使颗粒细化;通过恒流充放电测试、循环伏安(cyclic voltammetry,CV)及交流阻抗谱(electrochemical impedance spectroscopy,EIS)技术对材料的电化学性能进行了研究,结果表明,按LiV_3O_8质量百分比复合3%MWCNTs的LiV_3O_8-(3%)MWCNTs复合材料具有最佳的电化学性能,在0.1 C充放电倍率条件下,其首次放电比容量为364.5 m Ah/g,循环50次后放电比容量仍有292.2 m Ah/g,容量保持率为80.2%,而纯LiV_3O_8材料的首次放电比容量为308.2m Ah/g,循环50次后容量保持率仅为55.4%;采用MWCNTs与LiV_3O_8复合可使锂离子在材料颗粒间的电荷转移阻抗变小,有利于Li+的嵌入和脱出.  相似文献   

8.
RuO2/聚苯胺复合材料电极的制备及电化学性能表征   总被引:3,自引:1,他引:2  
以RuCl3·nH2O和苯胺为原料,采用原位聚合法制备了RuO2与聚苯胺(PANI)的纳米复合材料.运用SEM和XRD对样品进行了表征,通过循环伏安法测试了样品的电化学性能.结果表明:不同RuO2含量的复合材料电极的比容量由大到小顺序为3%、1%、10%、2%、7%、5%;RuO2含量为3%时,复合材料电极的比容量达到373.27 F/g,改用活性炭作辅助电极,比容量提高了近10%.  相似文献   

9.
以RuCl3·nH2O和苯胺为原料,采用原位聚合法制备了RuO2与聚苯胺(PANI)的纳米复合材料.运用SEM和XRD对样品进行了表征,通过循环伏安法测试了样品的电化学性能.结果表明不同RuO2含量的复合材料电极的比容量由大到小顺序为3%、1%、10%、2%、7%、5%;RuO2含量为3%时,复合材料电极的比容量达到373.27 F/g,改用活性炭作辅助电极,比容量提高了近10%.  相似文献   

10.
采用共沉淀法制备了LiCoO2包覆LiNi0.78Co0.2Zn0.02O2锂离子电池正极材料,对材料进行XRD、SEM的分析结果表明,该材料具类α-NaFeO2(R-3 m)结构,而且微观颗粒大小均匀.电化学测试结果表明,用LiCoO2进行表面包覆后比未包覆材料的初期放电比容量略有降低,但是材料的循环性能明显提高.包覆材料的首次恒流(60 mA.cm2,3.0~4.2 V,vs.Li /Li)充、放电比容量分别为243.63 mAh.g-1和204.58 mAh.g-1,首次循环效率为83.97%,200次循环后比容量仍为197.06 mAh.g-1,不可逆容量损失仅为7.52 mAh.g-1,容量保持率达到96.0%以上,具有很好的循环性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号