首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is very difficult to prepare full-densified aluminum nitride-boron nitride(AIN/BN) composite ceramics with homogeneous microstructure and high thermal conductivity.Spark plasma sintering (SPS)was used to fully densify the AlN/BN composites in this work.Microstructure,mechanical properties and thermal conductivity of the SPS sintered AIN/BN composites with 5-30 vol% BN were investigated.The results show that the microstructure of composites is fine and homogenous,and the AIN/BN composites exhibit high mechanical properties.To promote the growth of AlN grains and modify the distribution of grain boundary in AIN/BN composites,a heat treating methodology was introduced through gas pressure sintering(GPS).This processing was significantly beneficial to enhancing the thermal conductivity of the specimen.The thermal conductivity of AIN/BN composites with 5-30 vol% BN reached 60 W/m K after the samples were treated by GPS.  相似文献   

2.
It is very difficult to prepare full-densified aluminum nitride-boron nitride(AIN/BN)composite ceramics with homogeneous microstructure and high thermal conductivity.Spark plasma sintering(SPS)was used to fully densify the AIN/BN composites in this work.Microstructure,mechanical properties and thermal conductivity of the SPS sintered AIN/BN composites with 5-30 vol% BN were investigated.The results show that the microstructure of composites is fine and homogenous,and the AIN/BN composites exhibit high mechanical properties.To promote the growth of AIN grains and modify the distribution of grain boundary in AIN/BN composites,a heat treating methodology was introduced through gas pressure sintering(GPS).This processing was significantly beneficial to enhancing the thermal conductivity of the specimen.The thermal conductivity of AIN/BN composites with 5-30 vol% BN reached 60 W/m K after the samples were treated by GPS.  相似文献   

3.
Two hafnium diboride based ceramic matrix composites containing 20% (volume fraction) SiC particle and with or without AlN as sintering additives were fabricated by hot-pressed sintering. The mechanical properties and microstructures of these two composites were tested and the thermal shock resistances were evaluated by plasma arc heater. The results indicate that the composite with AlN as sintering additive has a denser and finer microstructure than composite without sintering additive, and the mechanical properties, thermal shock resistance of the composite with AlN as sintering additive are also higher than those of the composite without AlN. Microstructure analysis on the cross-section of two composites after thermal shock tests indicates that a compact oxidation scale contains HfO2 and Al2O3 liquid phase is found on the surface of composite with AlN, which could fill the voids and cracks of surface and improve the thermal shock resistance of composite.  相似文献   

4.
The precursor infiltration and pyrolysis(PIP) method for preparation of BN/SiO2 composites was used to improve mechanical properties, dielectric properties and feasibility of high temperature dielectric parts with large dimensions and complex shapes. In the processing procedure, the porous BN ceramic matrix was first successfully prepared by compacting the mixed powders of B and BN and then sintering them at a certain temperature under normal pressure of N2. The polycarbosilane(PCS) solution was vacuum infiltrated into porous BN ceramics at the room temperature and then at 800℃ in the air to depolimerize out amorphous SiO2, and sintered further at 1 300℃ in N2 to get BN/SiO2 composites. The microstructure of materials was studied by means of X-ray diffraction and electron probe micro analysis. The thermo-decomposition mechanism of PCS was investigated by a TG-DTA and infrared (IR) spectrum analysis. The flexural strengths were measured by the three-point bending method. The dielectric constant and the loss tangent were measured by the wave-guide method. The results show BN/SiO2 composites were fabricated. The obtained composites posses a flexural strength of 61.96 - 93.31 MPa, the dielectric constant in the range of 3.50 - 3.78 and the order of magnitude of the loss tangent at 10^-3 , which are good for the high tempera turedielectric parts with large size and complex shapes.  相似文献   

5.
92WC-8Co puwder mixture with superfine-tungsten carbide was respectively sintered by spark plasma sintering( SPS ) and sintering isostutic pressure (SIP). Complete dense samples with 200 nm WC grains and 94.2HRA hardness were prepared by spark plasma sintering at 1 150 ℃ and under 4.5 kN for 5 minutes. SIP was carried out at 1 400 ℃ for 30 minutes with a result of 300-400 nm WC grains and 93 HRA hardness. The results show that sintering temperature is greatly decreased by SPS, sintering time is largely shortened and WC grain growth is effectively retarded. Micropores and drawb(wks in superfine-cemented carbide made by SPS are greatly declined, which is very useful to improving nwehanical properties.  相似文献   

6.
1 IntroductionSiCp/Al composites have aroused considerable inter-ests in manyfields of industry due to their tailorable me-chanical and thermophysical properties .SiCp/Al compos-ites have been developed mainly as structural materials inapplicationfor automobile industries and aerospace indus-tries . However ,thermal management applicationsin elec-tronic packaging,such as substrates ,heat slugs and heatspreads have been focused on. Electronic componentsused in thermal management applications …  相似文献   

7.
A series of samples of hexagonal boron nitride-aluminum nitride ceramic composites with different amounts of CaF2 as sintering aid were prepared by spark plasma sintered at 1700-1850 ℃ for 5 min.The addition of CaF2 effectively lowered the sintering temperature and promoted the densification of AlN-BN composites.With the increase of sintering temperature,the density increased,and the contiguity of AlN grains enhanced in AlN-BN composites.Thermal conductivity of AlN-BN composites increased with the increase in CaF2 content and sintering temperature,and there is a maximum value of 78.6 W·m^-1·K^-1 when the sample with 3wt% CaF2 sintered at 1800 ℃.  相似文献   

8.
W-15Cu composite powders prepared by mechanical alloying (MA) of raw powders were consolidated by spark plasma sintering (SPS) process at temperature ranged 1 230-1 300 ℃ for 10 min and under a pressure of 30 MPa. By using high energy milling, particles containing very fine tungsten grains embedded in copper, called composite particles, could be produced. The W grains were homogeneously dispersed in copper phase, which was very important to obtain W-Cu alloy with high mechanical properties, fine and homogeneous microstructure. The microstructure and properties of W-15Cu alloys prepared by SPS processes at different temperature were researched. The results show that W-15Cu alloys consolidated by SPS can reach 99.6 % relative density, and transverse rupture strength (TRS) is 1 400.9 MPa, Rockwell C hardness (HRC) is 45.2, the thermal conductivity is 196 W/m-K at room temperature, the average grain size is less than 2 μm, and W-15Cu alloy with excellent properties, homogeneous and fine microstructure is obtained.  相似文献   

9.
BN ceramic is advanced engineering ceramics with excellent thermal shock resistance,good workability and excellent dielectricity.TiB2 ceramic has excellent electric conductivity,high melting points,and corrosion resistance to molten metal.Therefore,the composite consisting of BN and TiB2 ceramics is expected to have a combination of above-mentionaed properties,thereby can be used as self-heating crucible.In this puper,hot pressing technology was used to fabricate the high performance BN-TiB2 composite materials,microstructure and electric conducting mechanism were studied,and the relationship between the microstructure and physical property was discussed.the results show that the microstructure of composites has a great influence on the physical property of composites.The BN-TiB2 composites with excellent mechanical strength and stable resistivity can be obtained by optimizing the processing parameter and controlling the microstructure of composites.  相似文献   

10.
The effect of tin on synthesis of Ti3AlC2 by spark plasma sintering (SPS) from TiC/Ti/Al powders was investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used for phase identification and microstructure evaluation. The experimental results show that addition of tin can considerably accelerate the synthesis reaction of Ti3AlC2 and fully dense, essentially single-phase polycrystalline Ti3AlC2 could be successfully obtained by sintering 2TiC/1Ti/1Al/0.2Sn powders at 1200–1250 °C under a pressure of 30 MPa. SEM images show that Ti3AlC2 samples in about 2–5 μm thick and 10–25 μm long platelets can be obtained. The fracture toughness and flexural strength of Ti3AlC2 were 6.5±0.2 MPa·m1/2 and 560±10 MPa, respectively. Funded by the National Natural Science Foundation of China (No.20771088, No.50572080) and Doctoral Foundation of Wuhan University of Technology (No.471-38650142)  相似文献   

11.
Spark plasma sintering was used to fabricate Al/diamond composites.The effect of sintering temperature on the microstructure and thermal conductivity(TC) of the composites was investigated with the combination of experimental results and theoretical analysis.The composite sintered at 550℃shows high relative density and strong interfacial bonding,whereas the composites sintered at lower(520CC) and higher(580-600℃) temperatures indicate no interfacial bonding and poor interfacial bonding,respectively.High ...  相似文献   

12.
Powder of Ti-46at%Al alloy was synthesized through mechanical activation(MA) and then sintered and concurrently consolidated in a short sintering time of 900 s by using a spark plasma sintering(SPS) process. The XRD and SEM profiles show that the microstructures of TiAl alloys contained γ TiAl and small amount α-2 Ti3Al phase, whose amount can be controlled by the sintering temperature. The compacts retained the original fine-grained fully densified bodies by avoiding an excessively high sintering temperature. The alloys sintered at higher temperature with this process showed a coarser microstructure. So it is possible to produce dense nanostructured TiAl alloys by mechanically activated spark plasma sintering (MASPS) within a very short period of time.  相似文献   

13.
Fabrication and Mechanical Properties of TiC/TiAl Composites   总被引:3,自引:0,他引:3  
TiC/ TiAl composites with different TiC content were fabricated by rapid heating technique of spark plasma sintering ( SPS ). The effect of TiC purticles on microstructure and mechanical properties of TiAl matrix was imestigated. The results indicate that grain sizes of TiAl matrix decrease and mechanical properties are improved because of the addition of TiC particles. The composites display a 26.8% increase in bending strength when 10wt% TiC is added and 43.8% improvement in fracture toughness when 5ut% TiC is added compared to values of TiC-free materials. Grain-refinement and dispersion-strengthening were the main strengthening mechanism. The improvement of fracture toughness was due to the deflexion of TiC particles to the crack.  相似文献   

14.
烧结温度对BN陶瓷材料强度的影响   总被引:2,自引:0,他引:2  
采用热压烧结(HP)法制备纯BN陶瓷和B2O3-BN陶瓷复合材料.利用三点弯曲方法测定了这两种材料的抗弯强度、弹性模量等力学性能,通过扫描电镜对两种材料的断口进行了分析。结果表明:纯BN陶瓷烧结温度达到1800℃时相对质量密度和强度较低;添加B2O3烧结温度超过900℃时可以形成液相,改善了BN的烧结性能,提高了B2O3-BN复合陶瓷的相对质量密度,从而提高了材料的强度。  相似文献   

15.
The effects of activated sintering technology of H2 atmosphere sintering on the microstructure and properties of W-15Cu alloy using ultrafine W-15Cu composite powder fabricated by spray drying calcining-continuous reduction technology were investigated.The experimental results showed that W-15Cu alloy,consolidated by activated sintering technology of H2 atmosphere sintering for 1 h at 1300 ℃,with 98.5 % relative density,transverse rupture strength 1218 MPa,Vickers hardness HV0.5 378,average grain size about 1.2 μm and thermal conductivity 192 W/m·K,was obtained.In comparison to the normal sintering process,activated sintering process to W-15Cu alloy could be achieved at lower sintering temperature.Furthermore,better properties in activated sintered compacts were obtained,and activated sintering process resulted in finer microstructure and excellent properties.  相似文献   

16.
In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP.  相似文献   

17.
By using Nb and Si elemental powders as raw materials,dense Nb/Nb 5 Si 3 composites were successfully fabricated by a spark plasma sintering(SPS)technology.The microstructure of the fabricated composites was analyzed by OM,SEM,XRD and EPMA;the microstructure evolution of the composites was also investigated by a quenching test.The experimental results show that the prepared composites consist of Nb and Nb 5 Si 3 phases;Nb particle uniformly distributes in the in-situ synthesized Nb5 Si3 matrix.During the SPS process,an interfacial reaction occurs between Nb and Si particles to synthesize Nb 5 Si 3 until reactant silicon has been completely depleted.  相似文献   

18.
For improving the properties of SiC-mullite composite ceramics used for solar sensible thermal storage, MnO2 was introduced as sintering additive when preparing. The composite ceramics were synthesized by using SiC, andalusite, α-Al2O3 as the starting materials with non-contact graphite-buried sintering method. Phase composition and microstructure of the composites were investigated by XRD and SEM, and the effect of MnO2 on the properties of SiC composites was studied. Results indicated that samples SM1 with 0.2 wt% MnO2 addition achieved the optimum properties: bending strength of 70.96 MPa, heat capacity of 1.02 J·(g·K)-1, thermal conductivity of 9.05 W·(m·K)-1. Proper addition of MnO2 was found to weaken the volume effect of the composites and improve the thermal shock resistance with an increased rate of 27.84% for bending strength after 30 cycles of thermal shock (air cooling from 1 100 °C to RT).  相似文献   

19.
放电等离子烧结具有优异综合性能的新型NdFeB永磁材料   总被引:3,自引:1,他引:2  
采用放电等离子烧结技术和传统烧结技术制备了烧结NdFeB永磁体,并研究了2种磁体的磁性能、力学性能和化学稳定性.与传统烧结磁体相比,放电等离子烧结磁体具有与其相当的磁性能及更好的耐腐蚀和力学性能.显微组织结果表明,放电等离子烧结磁体主相Nd_2Fe_(14)B的晶粒细小、均匀.边界富钕相仅有少量位于主相Nd_2Fe_(14)B颗粒周围,大部分以颗粒形式分布在主相三角晶界处.这种独特的显微组织特征对于晶间腐蚀过程及脆性沿晶断裂过程具有明显的抑制作用.因此,放电等离子烧结磁体表现出优异的综合性能.  相似文献   

20.
MWCNTS/SiC composites were fabricated by aqueous tape casting. High solid content (50 vol%) SiC slurries with sintering additives and multi-wall carbon nanotubes (MWCNTs) as reinforcements were prepared using Tetramethylammonium hydroxide as the dispersant. The stability of MWCNTs/SiC slur-ries was studied and characterized in terms of zeta potential and rheology measurements. The relative density of the composite was about 98% after hot-pressing at 1850℃ (at 25 MPa in Ar for 30 min). The hardness of the composites decreased with the increase in MWCNTs content. The flexural strength and the fracture toughness were 742.17 MPa and 4.63 MPa·m1/2, respectively when the MWCNTs content was 0.25 wt%. Further increase in MWCNTs content to 0.50 wt% did not lead to the increase in mechanical properties. Most of MWCNTs were found to be located at SiC grain boundaries and the pull out of the MWCNTs was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号