首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 250 毫秒
1.
通过对国外土石坝文献中溃坝案例数据信息进行校验整理,并补充收集到的相关国内溃坝案例,形成了一个包含154个溃坝案例的基础数据库。在此基础上,针对均质坝和心墙坝两种坝型,对模型输入变量进行无量纲化处理,选择库容形状参数、水位比参数及坝高参数等作为自变量进行回归分析,建立了可模拟土石坝溃口峰值流量、溃口最终平均宽度和溃坝历时的数学表达式。该溃坝参数经验模型可反映坝型、溃坝方式、溃坝时库容、水位、坝高、溃口深度等参数对溃口峰值流量、溃口最终平均宽度和溃坝历时的影响。此外,通过对国内外常用的溃坝参数经验模型的统计分析发现,本文模型相较于已有的模型,依据的土石坝溃坝案例数据库信息更为翔实,输入变量较易获取,对溃坝参数的影响因素考虑更加全面,特别是能更好地反映坝体特征和当前水力条件对溃坝参数的影响。针对数据库中的相关案例,使用本文模型与常用经验模型进行计算验证,通过整体均方根误差和可决系数的计算,发现本文模型在整体上具有更好的适应性、计算精度和拟合效果。再基于不同的坝型和溃坝方式,选取4组国内外典型案例进行分析,发现本文模型在整体上计算结果较为准确,进一步验证了本模型的合理性和优越性。  相似文献   

2.
溃坝水流三维计算模型比较   总被引:1,自引:1,他引:0  
选取土石坝漫顶冲决过程中假定的溃口形状,采用FLOW-3D及FLUENT计算流体力学软件分别对固定溃口形状下漫坝水流进行全三维湍流数值模拟,对比研究溃坝水流的三维流动及水流对坝体的作用.结果表明,两者较为一致地反映了土石坝漫顶冲决过程中水流的流动及坝面应力分布,主要差异发生在坝体表面、水流自由液面附近以及水流掺混较为剧烈区域.理论上,FLOW-3D采用Tru-VOF方法捕捉自由液面所得水面附近结果应较为准确;FLUENT采用适应性较强的非结构化网格,所得壁面区域计算结果则更为合理.同时计算得到了较为精细的溃坝水流湍流结构和坝面壁面剪切应力分布,这将有助于深入理解大坝溃决的物理机理,进而促进溃坝洪水数学模型的发展及应用.  相似文献   

3.
为了预测滑坡泥石流坝溃决产生的洪峰流量和最大水深,本文的目标是建立滑坡泥石流坝在自然条件下首次溃决形式的经验公式模型,包括平均宽度bc和残留高Hd两个溃口形式的特征参数,从而为制订防灾减灾方案或应急预案提供科学依据。通过野外考察采集的数据以及溃决特征分析,选取影响滑坡泥石流坝溃口形式的主要因子,分别建立了坝高H、有效坝长B、堰塞湖库容W、坝体鞍部单宽体积V、内摩擦系数tan 以及上限粒径d90共6个因子与溃口形式(即溃口的平均宽度bc和残留高Hd)之间的经验关系公式。最后,将经验预测公式运用到实例进行检验,误差较小。  相似文献   

4.
《南昌水专学报》2015,(1):60-63
为全面评价尾砂库溃坝风险,主动应对可能出现的溃坝事故灾难,以黄荆坝尾砂库为例,建立溃坝洪水演进数学模型,经过模拟分析,得出了溃口流量过程和重要区域淹没情况.结果表明,溃坝初期溃口流量不断增加,随着库水位不断降低,溃口流量随后逐渐减小;黄荆坝上游来水越大,尾矿库发生溃决的的时间越短,淹没范围和淹没水深越大.  相似文献   

5.
溃坝洪水的数学模型应用   总被引:1,自引:0,他引:1  
根据溃坝洪水传播和运动的特点,采用守恒性较好和能够捕捉间断波的有限体积法,建立了一个包括上游库区洪水演进、溃坝过程和下游淹没影响区洪水演进的溃坝洪水数学模型,并采用经验公式和实验结果分别对溃口流量和二维溃坝洪水传播进行了验证.利用所建立的数学模型对某水库溃坝洪水演进和传播过程进行了模拟计算,溃口流量变化过程、坝上水位变化、溃坝洪水淹没过程和水量守恒等结果分析,表明所建立的溃坝洪水数学模型能较好地模拟洪水从库尾向坝址的传播以及溃坝洪水在下游淹没影响区的演进过程,并且模型计算结果完全能满足水量守恒,可以用于实际工程计算.  相似文献   

6.
借助安全评价中的故障树模式,构建土石坝漫顶溃坝的事故树模型,对造成土石坝漫顶溃坝的多种主要因素进行识别和分析。根据故障树的最小割集、最小径集计算基本事件结构重要度,得出土石坝及其配套工程的合理设计是控制其溃坝的关键因素。  相似文献   

7.
溃坝水流三维湍流的试验与数值分析   总被引:2,自引:1,他引:1  
采用假定溃口形状,选取临界漫顶及坝体完全淹没2组不同流量,进行定床物理模型试验,测量了溃口内部水流的垂线流速分布.采用CFD软件FLUENT对2组三维溃坝水流进行全流场湍流数值模拟,其结果与试验值吻合较好,同时较为精细地捕捉到了坝前水位稳定后溃坝水流三维流场、湍动能和壁面剪切应力.结果表明:高强度壁面剪切应力可能为坝体侵蚀主要因素,在坝顶及溃口与坝面的连接处壁面剪切应力及湍动能出现极大值,强湍动能将使得侵蚀的泥沙迅速扩散到水体当中,随着水流的运动向下游输移.三维流动的存在,使得泥沙向下游输运的过程中先向溃口内部集中,到达下游河道后再逐渐扩散到整个河道中.小流量情况下,这一趋势不太明显,随着漫顶流量的增大这一趋势明显增强.以上水力条件可能为溃口迅速展宽、降低的主要因素.  相似文献   

8.
为了定量判定溃口范围,以小寨子河水库混凝土拱坝溃坝实例建三维实体模型,采用弹塑性有限元法,针对水库初期蓄水、溃坝气候条件,拟定溃坝水位+温降+自重工况,对坝体和坝基溃坝时受力(荷载)情况进行数值仿真分析.结果表明:坝体结构单薄,设计不合理,不符合规程规范要求;坝体中部一、二期混凝土交界冷缝是最薄弱部位;以受压为主、受拉为辅共同作用发生屈服破坏而局部溃坝;溃口首先发生于受压剪M-C安全系数小于1的坝体贯穿部位,最终的溃口范围覆盖M-C安全系数2.0区域,可作为计算拱坝溃坝洪水时确定溃口范围的参考依据之一.  相似文献   

9.
堰塞坝泄流冲刷试验研究   总被引:10,自引:2,他引:8  
考虑到堰塞坝不同内坡坡度和不同坝体级配对溃坝过程的影响,设计了11组溃坝试验进行研究,根据对溃坝过程的摄影记录,观测到溃坝过程的四个阶段,其中阶段Ⅲ的坝体侵蚀最为剧烈,阶段Ⅰ内坡被侵蚀,阶段Ⅱ溃口顶部被侵蚀,阶段Ⅲ外坡被侵蚀,阶段Ⅳ坝体形态达到稳定,库区水位逐渐达到恒定值;运用WYG-Ⅱ型水位测量系统,得到整个溃坝过程水库的实时水位数据,试验结果表明:内坡坡度越大,溃坝洪峰流量越大;不均匀系数越大,溃坝洪峰流量由于绕流掀沙现象的存在反而增大,而后随着粗沙越多,细沙隐蔽作用突出,溃坝洪峰流量减小.  相似文献   

10.
基于线性冲蚀公式建立二维非黏性土石坝溃决模型. 所建模型利用线性冲蚀公式建立床面冲刷率与水流切应力的关系以计算坝体变形,无须应用输沙率公式和求解泥沙输移方程. 与现有精细物理模型相比,所建模型更简单,计算效率更高. 利用2个不同形式的算例,验证边坡坍塌算法的有效性;将所建模型分别应用于一维和二维非黏性土石坝漫顶实验,模型计算的坝顶高程、溃口最终宽度和峰值流量等关键指标值与测量值吻合良好,表明该模型能够较为准确地模拟非黏性土石坝溃坝. 对模型关键参数进行敏感性分析,分析不同参数对计算结果的影响.  相似文献   

11.
金沙江白格堰塞湖溃决过程数值模拟   总被引:1,自引:1,他引:1  
2018年10月10日和11月3日,在我国四川省与西藏自治区交界处的白格村同一位置连续发生两次滑坡,完全堵塞了金沙江形成堰塞湖。由于“10?10”滑坡形成的堰塞湖水位抬升迅速,堰塞湖于10月12日自然漫顶溃决。“11?03”滑坡堵塞了“10?10”堰塞体溃决形成的流道,形成了更大的堰塞湖,鉴于客观条件允许,采取了开挖泄流槽降低堰塞湖溃决水位的措施,至11月12日,堰塞湖发生漫顶溃决,溃口洪水峰值流量为31000m3/s。由于“11?03”白格堰塞湖溃决案例拥有较为完整的实测资料,为堰塞湖溃决过程的研究提供了宝贵的基础数据。基于堰塞体的溃决机理,建立了可考虑堰塞湖的水动力条件、堰塞体的形态和材料特征的堰塞湖溃决过程数学模型。模型采用宽顶堰公式模拟溃口洪水流量,并根据堰塞湖入湖和溃口流量以及堰塞湖的水位-湖面面积关系曲线确定堰塞湖水位的变化;采用基于水流剪应力和堰塞体材料临界剪应力,并可考虑宽级配堰塞体材料特性的冲蚀公式模拟材料的冲蚀过程;假设溃口在纵向下切和横向展宽过程中坡角保持不变,采用极限平衡法分析溃口在发展过程中发生的边坡失稳;采用按时间步长迭代的数值计算方法模拟堰塞湖溃决时的水土耦合过程。采用建立的模型对“11?03”白格堰塞湖溃决案例进行反演分析后发现,模型计算获得的溃口流量过程、堰塞湖水位变化过程、溃口发展过程与实测值基本吻合。参数敏感性分析表明,冲蚀系数对溃决过程具有重要的影响,残留坝高通过影响下泄库容也对溃决过程产生作用;另外,开挖泄流槽可降低堰塞湖溃决时的库容,从而对溃口流量过程产生影响,是降低灾害损失的有效手段。  相似文献   

12.
崩滑型堰塞坝是由地震、降雨、火山喷发等自然因素诱发的崩塌、滑坡堵塞河道所形成的天然土石坝,其在世界范围内广泛分布。崩滑型堰塞坝的形成与溃决具有高突发性、突溃性和强致灾性,会严重威胁所在流域的人民生命财产安全。因此,快速开展堰塞坝危险性评估,对应急抢险救灾具有重要的现实意义。目前对堰塞坝危险性快速评估的研究主要集中在成坝可能性、稳定性、寿命和溃决洪水等四个方面。本文总结了堰塞坝成坝影响因素和成坝快速判别公式,系统阐述了堰塞坝稳定性和寿命的定义、影响因素及快速评估模型,详细归纳分析了堰塞坝溃决模式、溃坝影响因素及坝址与下游河道的洪水快速预测模型。研究表明堰塞坝的形成主要受地形条件,固体物源条件和水源条件的影响;其稳定性、寿命和溃决主要受坝体几何形态,坝体材料、结构和水文特征等方面的影响。根据影响因素所建立的评估模型在一定程度上可以快速估算堰塞坝的稳定性、寿命、溃决流量等参数,但由于信息获取不便等问题,评估结果仍然存在一定的不确定性。在此基础上,本文提出了需要进一步研究的方向:(1) 考虑不同外因(地震、降雨等)条件下滑坡、崩塌启动及运移过程大型模型试验,建立考虑关键影响因素和水土物质相互作用的成坝快速判别模型;(2) 基于物探等手段开展堰塞坝坝体材料和结构参数的快速获取研究;(3) 建立考虑能量转换与耗散的溃坝程度快速评估模型,分析残余坝体致灾危险性;(4) 构建流域堰塞坝溃决洪水演进及水库调蓄减灾分析模型,指导流域水量调度及流域范围内工程建设;(5)开展堰塞坝灾害链对全流域影响的快速动态风险评估,为堰塞坝灾害预测及应急处置提供重要参考依据。  相似文献   

13.
堰塞体一般在自然力作用下瞬间形成,堆积体具有空间结构复杂、坝料级配宽泛、稳定性差、易在水流冲刷下发生溃决等特点。堰塞体作为一种重大的水旱自然灾害,其安全评价和灾害预测是国内外学者关注的焦点,目前尚有很多问题需要解决,包括:(1)堆积体由天然宽级配土石料构成,表现出显著的状态相关性,缺乏正确描述这种宽级配堆石料的状态相关剪胀理论与本构模型;(2)堰塞体形成后,会受上游堰塞湖水位抬升、持续非稳定渗流、湖区滑坡涌浪、后期地震等外荷载作用的影响,缺乏稳定性评判的标准和方法;(3)堰塞体缺乏必要的洪水溢流设施,容易发生溃决,且溃决水流冲蚀过程呈明显的非线性特点,溃口水力要素指标呈强非恒定流特征,缺乏反映宽级配堰塞体材料冲蚀机理的溃决过程数学模型。为此,有必要采取现场勘查、多尺度物理模型试验、数值仿真等综合手段开展研究,揭示堰塞体外观形态、内部结构和材料宏观力学特性及其时空变异规律,提出状态相关(级配、孔隙比、应力水平)的宽级配堰塞体材料剪胀方程,建立能适应复杂应力路径的广义弹塑性本构模型与坝体极限平衡分析方法;开展大型水工模型试验和溃坝离心模型试验研究,揭示非恒定流作用下堰塞体材料的动态冲蚀特性与堰塞体溃口演化规律,建立非恒定流作用时溃口动边界条件下的挟砂水流冲蚀方程,提出考虑流固耦合的堰塞体溃决过程数学模型,实现堰塞体漫顶或渗透破坏溃坝全过程水流运动特征、坝料输移规律、溃口演化过程及结构失稳的数值模拟。综合可靠度理论与溃坝过程数值模拟方法,提出能考虑流固耦合的堰塞体渗流、变形、稳定和溃决过程的一体化数值仿真平台,构建堰塞体全生命周期安全评价与灾变模拟理论体系与方法,为提升我国堰塞体防灾减灾决策水平提供科学的理论与技术支撑。  相似文献   

14.
堰塞坝是由崩塌、滑坡、泥石流等斜坡失稳体堵塞河流而形成的天然坝体。我国是堰塞坝的高发区,在作者统计的全世界范围内堰塞坝案例中,发生在我国的高达758例,占比59%。近年来,频发的地质构造活动和极端气候灾害(台风、暴雨、融雪等)诱发了大量的堰塞坝,严重威胁所在流域的生命财产安全。崩滑碎屑体堵江形成的堰塞坝通常结构松散、稳定性差、溃决程度大、溃决速度快,容易形成巨型洪灾,对下游生命财产造成更大危害。首先简要总结了一般堰塞坝堵江研究,阐明了崩滑型堰塞坝成坝特点。然后分析崩滑碎屑体运动及破碎机理和碎屑体堵江成坝机理研究,明确了颗粒破碎和水流条件对坝体形态特征、物质组成和稳定性的作用。崩滑碎屑体堵江通常有3种成坝模式:滑入型、爬高型和折返型,不同类型堰塞坝的稳定性具有显著差异。堰塞坝的稳定性与坝体关键特征参数(几何形态、坝体结构和物质组成)密切相关,而坝体特征参数又主要由崩滑体在运移过程中碰撞破碎和入河堵江时的固液耦合作用共同决定。考虑上述两种因素,结合物源性质、边坡地形、河谷及水流条件,本文提出了成坝影响因素与堰塞坝的空间形态、结构特征及稳定性的内在关系的研究思路,以便建立基于坝体稳定性快速评价的坝体特征预测模型。本研究的开展可为堰塞坝形成前坝体特征的事先预测以及堰塞坝形成后坝体稳定性的快速评估等方面的研究与实践提供重要理论依据。  相似文献   

15.
堰塞坝溃决物理概化试验是当前研究堰塞坝溃决机理较为可行的方法,但在现有堰塞坝溃决试验中,由于试验坝体尺寸较小、试验上游库容不足,导致试验的溃决过程与实际堰塞坝溃决存在较大差异。为尽量克服库容的不足所带来的影响,本文采用了最大库容达380m3的大尺度堰塞坝溃决试验系统。本文以无粘性、宽级配砂砾料堰塞坝为对象开展了多组室内大尺度溃决试验来揭示堰塞坝溃决机理,并通过设置不同背水面坝坡来研究其对溃决过程的影响。通过试验发现堰塞坝溃决过程可以分为沿程冲刷、溯源冲刷、快速发展和溃口稳定四个阶段。在溃决过程中发现陡坎侵蚀和溃口两侧土体失稳坍塌是溃口快速发展的主要机理。不同背水面坡度下的沿程冲刷阶段冲蚀特征基本相似,而溯源冲刷阶段及快速发展阶段溃决过程差异显著,较大的背水面坡度使溯源冲刷阶段跌坎水流更容易得到发展,进而影响溃口处的垂向冲深及侧向发展,导致快速发展阶段更易形成垂向落差较大的陡坎洪水冲蚀。从溃决历时来看,坡度的增加使溃口发展更快、峰值流量出现时间更早,进而导致溃决历时缩短。坝顶溃口宽度及峰值流量也会随着坡度的增加而增加。在本试验还较好地重现了天然堰塞坝下游河道两岸的淤积现象,并根据堰塞坝溃决过程中的水流特点、泥沙运动及溃决完成后下游河道的地貌,初步分析了淤积区的形成机理。  相似文献   

16.
本文提出了任意决口断面下溃坝水激波的理论解模型。通过引入分离变量法、相似性解理论等,文中不仅解决了复杂决口断面水激波不能解析求解的难题,而且还全面地克服了激波求解数值方法中存在的间断抹平、解的非物理振动、坝址处“狗腿”及洪水前锋无穷大流速等缺陷。新模型可直接根据决口断面形状和坝上游。下游的初始水位求解溃决后的水力特性,对此文中给出了求解方法和计算实例。算例表明,本文所提出的模型及其计算方法是成功而有效的。  相似文献   

17.
堰塞坝是由滑坡等失稳地质体快速堆积并阻塞河道而形成的天然坝体,溃决后会对下游人民生命财产安全造成严重威胁。深入开展非均质结构对堰塞坝溃决过程的影响研究,可为堰塞坝灾害的风险评估和应急处置提供重要参考。依托自主研发的水槽试验装置,通过开展不同结构类型堰塞坝的溃决模型试验,分析了均质、竖向非均质和水平非均质结构对坝体溃决的影响。研究发现:1)堰塞坝侵蚀过程受局部区域材料性质影响严重。2)均质坝中,随着中值粒径增大,材料抗侵蚀能力增强,溃决特征先由层状冲刷变为陡坎侵蚀,再变为多级陡坎侵蚀,峰值流量逐渐减小,峰现时间逐渐推迟。3)竖向非均质坝中,坝体上部材料主要影响溃口形成阶段历时和坝前水位;中部材料主要影响溃口发展阶段的溃口下切速率;底部材料主要影响下游坡脚稳定性和残留坝体形态。受溃口加速下切和溃决流量增加彼此间相互叠加影响作用,中部及底部材料分布对峰值流量的影响最为显著。4)水平非均质坝中,坝体内部4个区域对溃口发展的影响不同。过流侧上方材料影响溃决前期的溃口下切速率;过流侧下方、对岸侧上方材料分别影响溃决中后期的溃口下切、展宽速率;对岸侧下方材料对溃口发展影响最小。泄流槽设计时,应考虑非均质结构的影响,基于坝体结构特征采用工程措施限制溃口深切、促进溃口展宽,以降低峰值流量。  相似文献   

18.
In consideration of the range of clay content of Chinese earth dams, the world’s highest prototype tests have been made to research on the effects of cohesive strength of filling of cohesive homogeneous earth dam on breach formation. Three breach mechanisms were presented, they were the source-tracing erosion of dam body with the form of "multilevel headcut", "two-helix flow" erosion of dam crest and collapse of breach sidewalls due to instability. It can be concluded that the cohesive strength of filling o...  相似文献   

19.
溃坝洪水会给下游人民群众造成巨大的生命损失,开展溃坝洪水造成的生命损失风险定量评估对应急抢险救灾具有重要的现实意义。本文在已有生命损失贝叶斯网络HURAM1.0模型基础上,引入了人体稳定性物理模型,考虑人体与水流相互作用关系,对处于洪水中的人先进行稳定性判定,并进行溺水判定,运用蒙特卡洛模拟方法,综合了水深和水流速对生命损失的影响,建立HURAM2.0模型;并将该模型应用于唐家山堰塞坝溃坝洪水生命损失分析。结果表明:HURAM2.0模型建立了水流流速对生命损失影响的定量关系,更精确地刻画了人体在水流中的稳定性和求生能力,相比HURAM1.0模型对较强洪水强度条件下的生命损失预测结果更准确。同时,在本文建立的模型中,除水深度、洪水严重程度变化不大,其余变量的敏感性均有所上升,其中居民区住宅层数、在建筑物中庇护情况和溃坝时长等变量对模型计算结果的最大影响程度分别增加142%、95%和93%,加强了模型在低、中、高3类洪水强度下的解释性,与HURAM1.0相比在贝叶斯反演分析中更占优势。在唐家山堰塞坝溃坝风险分析中,HURAM2.0能区分出不同水流速条件下的生命损失,更符合实际情况,即开挖泄流槽前风险大、死亡率高,在现场勘测和开挖泄流槽后风险及死亡人数大大降低,建议结合预警疏散以降低生命损失风险。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号