首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
为研究海水循环水养殖系统生物滤器的快速启动,考察了不同水力停留时间(HRT)和温度条件下,海水生物流化床(BFB)对污染物的去除效果,探讨其对海水生物流化床启动的影响。结果表明,当HRT=1 h时,实验组能较快地实现物质间转化且更快恢复平衡状态,适合挂膜;高温条件(28 ℃)适合流化床启动,可更快观测到生物膜附着生长。  相似文献   

2.
采用沸石-塑料混合填料为载体构建固定床生物膜反应器,周期性进水(厌氧)-排水(好氧)富集培养聚糖菌(GAOs),结合沸石颗粒吸附作用实现厌氧条件下COD和氨氮的去除。在进水COD和氨氮浓度分别为(508±19)mg/L和(40±3)mg/L、HRT为12 h(厌氧6 h、好氧6 h)的运行条件下,单级反应器COD、氨氮和总氮去除率分别为89.2%、57.5%、57.5%。双级反应器条件下,COD、氨氮和总氮的平均去除率分别为93.1%、84.9%、70.8%。缩短50% HRT(厌氧/缺氧3 h+好氧3 h)后,双级反应器总氮去除率提升到81.7%。16S rRNA高通量测序结果显示,聚糖菌Candidatus Competibacter的相对丰度在塑料填料表面上升了30.43倍(0.46%→14%),而在沸石颗粒表面上升了14.35倍(0.46%→6.60%),表明塑料填料表面更有利于聚糖菌的富集。  相似文献   

3.
目的 通过A/O反应器处理猪场厌氧发酵液试验,研究A/O反应器联合驯化过程中营养物质的去除规律.方法 A/O工艺对猪场厌氧发酵液启动完成后,改变系统运行参数,包括:溶解氧(DO)、水力停留时间(HRT)和内循环回流比(r)等,研究系统处理效率.结果 采用了先独立后联合的启动方式,在历时50 d后,A/O反应器顺利启动,出水COD、NH3-N去除率均稳定的保持在90%左右,TN去除率最高可到60%左右.当DO由2 mg/L提高到3 mg/L时,COD和氨氮的去除效果均有所提高,其中氨氮去除效果尤为明显,好氧区内的DO质量浓度最佳为3 mg/L.控制溶解氧含量为3.0 mg/L,当好氧区的HRT由12 h降低为10 h时,COD和氨氮的平均去除率均有所下降,因此好氧区的最佳水力停留时间应维持在10~12 h.结论 在不同的硝化液回流比下,A/O膜生物反应器对COD去除效果变化不大,而对总氮去除影响较大,得出此次试验硝化液的最佳回流比为3.0.  相似文献   

4.
MBBR法处理养猪场污水实验研究   总被引:1,自引:0,他引:1  
采用移动床生物膜反应器(MBBR)处理养猪场污水,考察了填料填充比例,水力停留时间(HRT),进水CODa和NH3_N浓度对处理效果的影响.结果表明:在填料填充比例为50%(体积比).单级反应器水力停留时间为10 h,CODa进水浓度为411~1223 mg/L,NH3_N进水浓度为193~387 mg/L的条件下,反应器运行稳定且处理效果好,最终出水CODa平均为100mg/L,去除率大于90%,NH3_N平均为80mg/L,去除率为80%,均达到<畜禽养殖业污染物排放标准>(GB18596-2001)的要求.  相似文献   

5.
微生物固定化处理低浓度甲醇废水试验研究   总被引:5,自引:0,他引:5  
在好氧条件下,筛选、驯化出具有降解甲醇能力的工程菌(15株),并将之固定于颗粒活性炭上,组成固定化微生物反应器.考察不同吸附载体、pH、温度、溶解氧(DO)、底物浓度(甲醇浓度)及水力停留时间条件下,微生物固定化柱对甲醇处理效果的影响.确定最佳反应条件为:pH为7 0~8 5,水温为25~35℃,DO为3~5mgL,水利停留时间为30min,甲醇质量浓度为15~35mg/L时,反应器对甲醇的平均去除率可达70%以上.经固定化生物柱处理后的甲醇废水,出水的CODcr<12mg/L,满足进入脱盐水系统的要求,进一步处理可回用于工业锅炉用水.  相似文献   

6.
基于流体剪切力和颗粒流化特征对生物膜性质的重要影响,分析并对比了与流体剪切力和颗粒流化特征密切相关的床层膨胀率对锥形和柱状流化床生物膜行为的影响.采用改变液相回流比的方法调节床层膨胀率,研究了柱状流化床(CFB)和锥形流化床(TFB)生物膜反应器中生物膜厚度、生物量、污染物去除效率、悬浮生物质浓度和生物颗粒分布的情况.结果表明:当进水的质量浓度为220mg/L,水力停留时间45min,在相同的床层膨胀率下,TFB与CFB相比生物量高且稳定,生物颗粒的分布更为均匀.当床层膨胀率在一定范围内变化时(14%~90%),TFB对污染物质的去除率稳定在95%以上,较CFB高15%~20%.床层膨胀率对悬浮生物质浓度的影响的研究结果表明生物膜的脱落将使悬浮生物质浓度增加.  相似文献   

7.
对中温(30±2℃)条件下颗粒活性炭(GAC)载体厌氧流化床(AFB)反应器处理硫酸盐草浆废水启动方法进行了研究。实验表明:采用稳定进水COD基质浓度,控制硫酸盐草浆废水和人工合成葡萄糖废水比例,以抑制性基质逐步取代非抑制性基质的方法,达到了微生物的顺利驯化和反应器较快启动的目的  相似文献   

8.
从若干菌群中选育分离出高效降解屠宰废水的优势菌种,将低温保存的优势菌种活化与流化床内的载体混合,在启动过程中逐步提高进口浓度、水力停留时间、空气流量来完成流化床载体接种优势菌种形成生物膜.结果表明:表观气速不超过1.08 cm/s、水力时间不超过4h有利于活性炭挂膜;启动成功后,有机容积负荷达6.34 kg COD/(m3 &#183;d),COD去除率保持在85%以上.  相似文献   

9.
目的使自来水厂出水达到最新生活饮用水水质标准,满足提高整体区域水体水质的综合要求.方法利用固定化硝化细菌颗粒流化床反应器,采用连续曝气方式运行,检测进出水水质变化.结果水力停留时间(HRT)在0.5~1.5 h内变化,进水氨氮质量浓度为7.6~1.6mg·L^-1,出水氨氮质量浓度为0.9~0.3 mg·L^-1.结论固定硝化菌颗粒流化床系统具有较强的抗水力负荷冲击的能力,在枯水期,出水氨氮质量浓度〈0.9 mg·L^-1,能够达到《生活饮用水水源水质标准》(CJ3020-1993)中规定的Ⅱ级氨氮质量浓度的要求;在丰水期,出水氨氮质量浓度〈0.4 mg·L^-1,满足《生活饮用水卫生标准》(GB5749-2006)氨氮的要求.  相似文献   

10.
以明胶废水为研究对象,采用微好氧与厌氧水解酸化工艺进行对比处理实验,探讨了不同水力停留时间下微好氧与厌氧水解酸化对明胶废水水质改善的效果。实验结果表明,在水力停留时间达到72 h的时候,溶解氧为1.3~1.6 mg/L的微好氧反应器的COD去除率最大可达25%,溶解氧为0.3~0.5 mg/L的厌氧反应器的COD去除率最大可达22%;微好氧反应器的VFA的含量达到12 mg/L左右,厌氧反应器只有8 mg/L左右;微好氧反应器的pH值可由最初的12.5降至7.5左右,而厌氧反应器只能降至8.0左右;两个反应器对蛋白质去除效果的差别并不明显,都可以达到90%以上,但是微好氧反应器的氨氮浓度只有22 mg/L,小于厌氧反应器中的氨氮浓度,说明微氧条件有利于氨氮的扩散挥发,低浓度的氨氮对微生物的危害较小。对比得出微好氧反应器的出水水质较好,更适合明胶废水水解酸化的预处理。  相似文献   

11.
厌氧升流式污泥床反应器处理维生素C废水   总被引:4,自引:0,他引:4  
为提高维生素C(Vc)生产废水的处理效率,探索其厌氧生物处理的可行性,采用2.2 L实验室规模的中温厌氧升流式污泥床反应器(UASB)在150 d试验周期内对其在处理Vc生产废水中的可行性及最佳运行参数进行探索.结果表明,以厌氧消化池污泥作为接种污泥,UASB反应器在65 d内启动成功.反应器运行稳定期间,进水COD质量浓度约为10000 mg/L,COD去除率达92%,其平均容积负荷达10.8 kg/(m3.d),相应的水力停留时间为15 h.反应器的产CH4速率为3.2 m3/(m3.d),产生的沼气中CH4含量为72%.所去除COD的89%被转化成CH4.污泥的VSS/TSS比率由接种期的0.41升高到0.82.污泥产甲烷活性由启动初期的0.18升高至0.85 L/(gVSS.d)并保持稳定.  相似文献   

12.
为提高厌氧折流板反应器(ABR)的处理效能,采用有效容积为28.75L的4格室ABR,通过进水COD质量浓度和水力停留时间(HRT)的调控,探讨有机负荷率(OLR)的改变对系统运行特征和效能的影响.结果表明,在OLR为4.0~5.4kg·m-3·d-1范围内,通过进水COD质量浓度和HRT的调控,可使参与厌氧消化过程的...  相似文献   

13.
采用生物接触氧化法处理含聚丙烯酰胺(HPAM)的模拟污水。在水力停留时间38h,溶解氧(DO) 3~4mg/L,进水流量0.38L/h的条件下,考察了温度、HPAM 质量浓度和污水中碳源含量对模拟污水COD去除和 HPAM 降解的影响。结果表明,实验系统处于稳定运行阶段,温度为37,45 ℃时,平均COD去除率分别为60.1%, 56.5%,平均HPAM 降解率为63.2%,57.0%;进水HPAM 质量浓度为100,120mg/L时,平均COD去除率分别为 56.8%,51.5%,平均HPAM 降解率为59.7%,55.5%,处理效果均能满足国家污水二级排放标准的要求。  相似文献   

14.
研究以陶粒粒子为载体,采用快速排泥挂膜法,在内循环三相流化床反应器运行过程中逐渐加大进水量和进水浓度,使微生物适应高氨氮废水环境;研究了水力停留时间、NH4+-N浓度负荷冲击对NH4+-N去除率的影响.结果表明:内循环三相流化床可用于处理高NH4+-N废水;底物浓度越高水力停留时间越长;内循环三相流化床具有较好的抗负荷冲击能力,有利于解决实际废水水质不稳定难以达标排放的困难.  相似文献   

15.
为了强化硫酸盐还原反应器的还原效能,利用小空间厌氧移动床生物膜反应器,研究了反应温度、进水pH、水力停留时间( hydraulic retention time,HRT)、ρ( COD)/ρ( SO2-4)和回流比对SO2-4还原效果的影响,从而考察反应器还原SO2-4的效能及在高负荷条件下稳定运行状况.研究结果表明:温度35℃、进水pH=7.0、ρ( COD)/ρ( SO2-4)=2.5、HRT=8 h和回流比=4:1为反应器运行的最佳工况条件;进水SO2-4质量浓度在1500~2500 mg/L时,SO2-4的还原率保持在78.77%~88.89%,SO2-4的还原速率最高达5.90 kg/(m3·d),表明反应器具有较强的SO2-4还原能力;在进水SO2-4质量浓度为2250 mg/L左右时,连续运行20 d,SO2-4还原率达87.13%并能稳定运行.  相似文献   

16.
通过聚乙烯醇(PVA)缩甲醛交联反应制备的凹土/PVA多孔载体,具有比表面积大、孔隙丰富、挂膜启动速度快、附着生物量大等特点,应用于生物流化床处理有机废水可取得较好的处理效果。20d挂膜启动试验表明,在凹土/PVA多孔载体投加量(堆积体积)为曝气区容积20%的条件下,模拟废水进水COD1000~3000 mg/l,进水COD负荷不超过8.7kg·m-3·d-1时,COD去除率可保持90%以上。对氨氮也有较高的去除能力,进水氨氮浓度100 mg/l以内,停留时间为12 h时,稳定运行时氨氮去除率可保持在90%以上。  相似文献   

17.
The two-stage and two-phase anaerobic process (TSTP) composed of hydrolytic acidification reactor,first-order and second-order external circulation anaerobic reactors (EC) was taken to treat methanol wastewater. Test results show that TSTP process is quick start-up in 51 d, and the maximum VFA of hydrolytic acidification reactor effluent reaches 876 mg/L. Under the condition of volume loading of 6.56 kgCOD/m3·d, COD removal rate of the first-order EC reactor is about 85%, and under the condition of volume loading of 1.02 kgCOD/m3·d, COD removal rate of the second-order EC reactor is about 50%. When the inflow COD of TSTP process is between 7000-11000 mg/L, its effluent COD is lower than 600 mg/L. In the biological conversion process of methanol into methane,the production of acetic acids as an intermediate product can be ignored and the direct production of methane from methanol is predominant.  相似文献   

18.
以硝化菌增长的Haldane模式为基础,通过理论分析证明,完全混合式活性污泥反应器是碳氧化(COD降解)和NH3—N硝化合并处理工艺的最佳反应器,给出了曝气池NH3—N的最佳浓度(7.4mg/L).在此基础上,采用单级活性污泥法处理同时含有COD350—400mg几和NH3—N150mg/L的树脂生产废水,结果表明:当控制水力停留时间(HRT)为8h时,NH3—N的硝化率和COD去除率分别为90%和65%,将HRT延长至10h,NH3—N可完全硝化,而COD的去除率并不降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号