首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
为研究结构钢圆杆的疲劳破坏模型,以结构钢的椭球面断裂模型为开裂判据,由结构钢圆杆疲劳裂纹的裂尖真实应力场,计算出结构钢圆杆疲劳裂纹的失稳扩展面积、稳定扩展面积和稳定扩展长度.基于结构钢疲劳裂纹随加载次数加速扩展的试验事实,假定结构钢圆杆的疲劳裂纹稳定扩展速率是循环加载次数的单调递增幂函数,即双对数坐标系下结构钢圆杆的疲劳裂纹稳定扩展速率和循环加载次数为单调递增线性函数,积分后得到结构钢圆杆的疲劳裂纹稳定扩展长度和疲劳寿命间的函数表达式,导出结构钢圆杆的疲劳破坏模型.建议的结构钢圆杆的疲劳破坏模型表明,结构钢圆杆的疲劳寿命是名义最大应力、相对应力幅、初始裂纹位置和初始裂纹长度的复杂函数,不能简单化为仅是应力幅的函数.对Q345B圆钢杆进行了常幅循环应力疲劳试验,结果表明,Q345B圆钢杆的疲劳寿命随相对应力幅和名义最大应力的增加而降低.根据Q345B圆钢杆的疲劳试验结果,标定了其疲劳破坏模型参数,验证了建议的疲劳破坏模型精度.  相似文献   

2.
为得到固有频率随疲劳裂纹扩展的变化规律,在拉剪点焊试样有限元模型中,使用逐渐由少到多断开单元节点的方法模拟裂纹扩展过程.根据损伤力学原理和裂纹在横截面上的投影定义了损伤,建立了基于载荷幅和平均应力的疲劳寿命预测模型.利用此模型预测了实际试样的疲劳寿命.寿命预测结果与实验寿命结果对比表明,此疲劳寿命预测模型能较好地估算点焊结构的疲劳寿命.  相似文献   

3.
钢-混凝土组合梁疲劳性能的有限元分析   总被引:1,自引:0,他引:1  
目的为提高组合梁的抗疲劳寿命,研究组合梁疲劳性能.方法采用ANSYS软件包对组合梁的疲劳性能进行数值模拟与研究,通过建模对其施加疲劳荷载,计算具有不同配筋率和混凝土抗压强度的7根组合梁应力幅和疲劳寿命,得到了相应的s—N过程曲线,并与组合梁的试验结果和国际相关规范进行了比较.结果混凝土抗压强度从36.4MPa提高N41.8MPa,疲劳寿命提高了1.48倍;其他条件相同的情况下,应力幅提高9.9/MPa,试验和有限元计算疲劳寿命提高12.8万次和24万次.结论配筋率、混凝土强度和应力幅值是影响组合梁疲劳寿命的主要因素,配筋率比混凝土抗压强度影响更显著.  相似文献   

4.
为了提高高温条件下修井的作业效率及自动化程度,设计了一种新型自动吊卡,并对吊卡关键部位进行了强度分析.在确定修井机吊卡结构和工作原理的基础上,利用Solidworks对吊卡体进行建模,并利用ANSYS Workbench有限元软件对吊卡载荷状况进行模拟加载及分析计算,得到了吊卡的静力学强度、形变状态和疲劳寿命的分析结果,并获得了应力云图及相应数据.仿真结果表明,吊卡的静力强度、疲劳寿命有限元计算结果符合工作要求,稳定可靠,可为吊卡的工程应用提供参考.  相似文献   

5.
直蚌线发动机活塞疲劳分析   总被引:1,自引:0,他引:1  
采用三维软件建立发动机活塞的几何模型.利用ANSYS有限元软件对活塞进行静力学分析,找到应力最大部位,运用ANSYS W orkbench疲劳分析功能对应力最大部位进行疲劳分析,得到疲劳寿命,为活塞的进一步改进设计提供理论依据.  相似文献   

6.
测试了XCQ16钢的力学性能,在实验中获得疲劳寿命曲线,在疲劳损伤累积理论的基础上,通过有限元分析,利用ANSYS中疲劳分析模块,仿真模拟了XCQ16轴向疲劳实验,完成对XCQ16钢的试样疲劳寿命预测。仿真结果表明轴向疲劳仿真是可行的。  相似文献   

7.
随着我国高速铁路网络的逐步形成,钢结构铁路桥梁的疲劳问题日益显著,成为研究的热点。以典型的上承式钢拱桥——西溪河大桥为研究对象,通过有限元软件ANSYS对主桥结构建立数值模型,分析其在疲劳荷载下的应力分布及应力集中系数。对材料的基本S~N曲线进行合理修正,得到针对桥梁构件的S~N曲线;应用名义应力法,计算桥梁结构中各杆件的疲劳寿命,进而研究大桥的疲劳性能。研究结果表明:西溪河大桥的疲劳寿命大于107次,疲劳性能满足实际要求;应力集中主要出现在腹杆与弦杆的焊接部位,因而施工时应重点保证焊接质量;虽然疲劳破坏为脆性破坏,但拱桁架中部分杆件失效后可进行多次应力重分布,结构仍然有一定的静力及疲劳承载能力,因此结构的整体疲劳破坏具有一定延性。文中提出的疲劳寿命计算方法适用于桥梁的寿命评估。  相似文献   

8.
基于有限元的波纹钢腹板组合箱梁疲劳损伤分析   总被引:1,自引:1,他引:0  
针对波纹钢腹板组合箱梁(以下简称箱梁)的抗弯性能进行有限元分析,分析箱梁的静力位移、应力和应变结果,建立箱梁破坏损伤机理并得到应力薄弱点。同时,根据有限元分析结果,进行箱梁局部应力应变分析,得到箱梁不同水平下的疲劳寿命。最后,结合疲劳损伤和疲劳断裂理论进行箱梁的疲劳裂纹扩展行为及破坏过程和寿命预测研究,分析了正弦波疲劳荷载作用下箱梁中的钢腹板、PBL剪力连接件以及钢板翼缘等部件的疲劳裂纹萌生及寿命预测结果与试验结果吻合较好。研究表明:根据美国规范AASHTO2004中C类标准进行工程设计和疲劳寿命估算与试验符合较好,同时采用Palmgren-Miner线性累积损伤疲劳准则能有效地计算变幅疲劳载荷下箱梁的疲劳损伤及断裂破坏过程,为实际工程中箱梁疲劳性能设计提供参考。  相似文献   

9.
结合大连新港新建30万吨级(兼靠45万吨)进口原油码头工程,研究离岸深水港码头导管架结构在系泊船舶撞击下的疲劳损伤.采用通用有限元程序ANSYS计算船舶撞击作用下导管架平台的内力与结构构件的名义应力,通过应力集中系数换算,得到管节点的热点应力.采用挪威船级社(DNV)规范的S-N曲线对该热点应力进行校核,从而获得码头导管架在船舶撞击作用下的疲劳寿命.通过对比疲劳寿命的计算结果可知,采用灌浆管节点,可有效降低管节点的应力集中系数,提高结构的疲劳寿命.  相似文献   

10.
复合型裂纹的扩展路径模拟及疲劳寿命预测   总被引:1,自引:0,他引:1  
针对二维裂纹稳态扩展,基于位移外推,通过最小二乘法拟合得到应力强度因子数值计算方法;利用最大周向应力准则判断裂纹扩展方向,并得到作为裂纹失稳扩展判据的等效应力强度因子;通过Paris准则得到疲劳寿命预测数值方法。基于ANSYS软件平台,根据上述理论通过APDL编程建立了裂纹扩展路径模拟及疲劳寿命预测模型。该模型可根据裂尖位置进行参数化建模及网格自动划分。将3个典型算例仿真结果与相应解析解或实验结果进行比较,验证了该方法的正确性,为裂纹扩展路径模拟及疲劳寿命预测提供了一种有效的技术手段。  相似文献   

11.
基于断裂力学的钢梁整体节点疲劳寿命分析   总被引:1,自引:0,他引:1  
利用ANSYS软件构建有限元分析模型,结合断裂力学相关理论对整体节点模型的疲劳寿命进行估算。以为此基础,分析论证了整体节点模型的疲劳可靠性。  相似文献   

12.
HRBF500钢筋是我国冶金行业新研发的超细晶粒高强钢筋,若用于高铁中的钢筋混凝土构件需承受反复荷载,HRBF500钢筋混凝土梁的疲劳寿命预测成为必须解决的问题.基于ANSYS软件,对配有HRBF500钢筋的矩形和T形混凝土梁的疲劳寿命进行分析,得出影响疲劳寿命的主要因素为配筋率,最小疲劳荷载及荷载幅,寿命预测和试验结果吻合较好.为了使预测方法用于实际工程设计,在有限元计算的基础上进行系统的分析、拟合,提出了HRBF500钢筋混凝土梁疲劳寿命预测的简化计算公式,可为实际高铁工程设计提供参考.  相似文献   

13.
通过有限元对矿用支架搬运车扭矩轴的极限载荷、过载断裂失效过程及疲劳寿命进行了分析和研究,为扭矩轴的设计和安全评定提供依据,最大限度地发挥其过载保护及传递扭矩的作用.  相似文献   

14.
利用静力试验的结果,并结合ANSYS有限元数值计算,提出了闭口纵肋正交异性钢桥面板的疲劳验算方案,在理论上对钢桥面板寿命进行了具体分析.  相似文献   

15.
为了研究钢箱-砼组合结构中PBH剪力键在反复荷载作用下的疲劳性能,设计制作了PBH剪力键试验模型,进行了24万次疲劳推出试验。在疲劳破坏形态和试验滑移及应变数据分析的基础上,利用数值工具开展肋板开孔孔径、穿入钢筋直径、混凝土强度3个参数的PBH剪力键疲劳寿命影响因素分析。研究表明:PBH剪力键的疲劳破坏形态与静载破坏相似,表观表现为混凝土面多处斜向劈裂裂缝、内部榫孔混凝土压碎、穿入钢筋局部屈服;疲劳破坏演化过程分为疲劳损伤开始、发展、破坏3个阶段,其中疲劳发展阶段占整个疲劳阶段的91.7%,结构刚度在疲劳损伤开始和发展阶段退化较慢,在疲劳破坏阶段退化较快;肋板开孔孔径、穿入钢筋直径、混凝土强度3个参数对PBH剪力键疲劳寿命影响均有明显影响,其中穿入钢筋直径对疲劳寿命的影响尤为突出。  相似文献   

16.
为优化电动车车架设计及后续改进,通过三维软件Solidworks对电动自行车车架进行三维建模,并导入ANSYS Workbench软件从而获得有限元模型.根据车架实际试验要求,对有限元模型进行结构的静力分析,获得车架各部分应力应变情况,随后分别进行恒定载荷疲劳分析和随机载荷疲劳分析;在此基础上,对车架在不同工况环境下的寿命进行分析评估,探讨不同工况下寿命随载荷的变化情况,找出应力集中部位和容易产生失效的部位.  相似文献   

17.
以有限元法为基础,在建立搅拌轴有限元力学模型的基础上,先借助有限元软件ANSYS静力分析找出搅拌轴上的危险点,再通过ANSYS-Fatigue模块对这些点进行疲劳寿命分析。通过对危险点螺棱与轴的过渡部分进行疲劳寿命分析,得到疲劳累积系数0.6,表明该搅拌轴在使用年限内满足疲劳强度要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号