首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
以凹凸棒石黏土为载体采用浸渍还原-气相沉积负载Pd和AlCl3制备了Pd-AlCl3-凹土加氢催化剂,并用于苯酚选择性加氢制环己酮。采用XRD、EDX和SEM对催化剂进行了表征,考察了AlCl3、Pd含量以及反应条件对苯酚加氢制环己酮的影响。结果表明:气相沉积法可将AlCl3均匀分散到凹凸棒石晶体表面并提高其固载量,AlCl3的引入和Pd含量的增加可增加催化剂的活性,提高产物环己酮选择性。适宜的反应条件为Pd含量5%,反应温度80℃,反应时间3h,此时催化剂活性最好,苯酚转化率为99.99%,环己酮选择性可达到100%。  相似文献   

2.
以酸性SiO_2为载体,Pd(NO3)2为活性金属前驱体,制备Pd质量分数为0.5%的Pd/SiO_2催化剂,考察其对于苯酚加氢制备环己酮的催化性能.实验结果表明:Pd/SiO_2催化剂在反应温度135℃,反应压力1.0 MPa,反应时间3.5 h的条件下,苯酚转化率可达到71.62%,环己酮的选择性可达到90.77%.良好的催化性能源于Pd/SiO_2较大的比表面积、高度分散的Pd以及适宜的酸碱性.  相似文献   

3.
通过对纳米碳管进行纯化、表面修饰处理,浸渍PdCl2溶液制得Pd/CNTs催化剂,进行化学组成及XRD表征,测试Pd/CNTs催化剂对苯酚气相加氢制环己酮的催化性能.实验结果表明:Pd负载到CNTs上,负载量为0.97%(质量分数),负载后的碳纳米管仍然保留碳纳米管的结构.Pd/CNTs催化性能测试结果表明:反应温度为150℃,氢酚摩尔比4∶1,液体进料速率0.42 mL/g.h的条件下催化剂活性较好,此时苯酚转化率43.17%,环己酮选择性达68.36%.  相似文献   

4.
考察了以碳酸二甲酯与对硝基苯酚在固体碱催化剂上液相合成对硝基苯甲醚的过程。研究结果表明:以活性炭(AC)为载体,以KOH为活性组分,当活性组分负载量达到20%(质量分数)时催化剂具有最高的活性和选择性。采用CO2-TPD对KOH/AC的性质进行了表征,结果表明KOH/AC催化剂的碱强度随KOH负载量的增加而增加,当KOH负载量超过20%时催化剂的碱强度开始降低。考察了反应温度,反应时间,原料配比,催化剂用量等因素对对硝基苯酚转化率和对硝基苯甲醚选择性的影响。在最佳反应条件下:反应温度393 K、反应时间2 h、n(DMC)∶n(p-nitrophenol)=10∶1,对硝基苯酚转化率和对硝基苯甲醚选择性都可以达到99%以上。  相似文献   

5.
KOH/AC催化合成对硝基苯甲醚的研究   总被引:1,自引:0,他引:1  
考察了以碳酸二甲酯与对硝基苯酚在固体碱催化剂上液相合成对硝基苯甲醚的过程.研究结果表明:以活性炭(AC)为载体,以KOH为活性组分,当活性组分负载量达到20%(质量分数)时催化剂具有最高的活性和选择性.采用CO2-TPD对KOH/AC的性质进行了表征,结果表明KOH/AC催化剂的碱强度随KOH负载量的增加而增加,当KOH负载量超过20%时催化剂的碱强度开始降低.考察了反应温度,反应时间,原料配比,催化剂用量等因素对对硝基苯酚转化率和对硝基苯甲醚选择性的影响.在最佳反应条件下:反应温度393K、反应时间2h、n(DMC)∶n(p-nitrophenol)=10∶1,对硝基苯酚转化率和对硝基苯甲醚选择性都可以达到99%以上.  相似文献   

6.
文章采用共沉淀法制备了Ru/ZrO2·xH2O催化剂对丙酸甲酯进行加氢反应研究。考察了反应时间、温度、氢气压力、搅拌速度和溶剂等因素对丙酸甲酯加氢的转化率和产物丙醇选择性的影响。结果表明,以醇作溶剂时,反应的活性和选择性都比较差,丙醇的最大收率仅为27.5%,而以水作溶剂时丙酸甲酯的转化率高达94.8%,丙醇的选择性为91.7%。催化剂可以循环使用6次,活性和选择性没有明显下降,显示了良好的工业应用前景。  相似文献   

7.
以正硅酸乙酯和双-(3-(三乙氧基硅)丙基)-二硫化物通过溶胶凝胶法制备的S2-SiO2为载体,再通过浸渍法合成了新型负载型钯催化剂,并研究了该催化剂对乙炔气相催化加氢制备乙烯的催化活性、转化率及选择性,而且采用FTIR、UV-Vis、TG和BET对催化剂的结构进行了表征。结果表明,催化剂对乙炔催化加氢制乙烯反应具有良好的催化性能,当钯负载量为0.6%时,反应温度达到140℃,乙炔转化率达到100%,乙烯选择性可达到90%以上;FTIR结果表明合成含配体的SiO2载体;BET表征结果显示添加配体后的催化剂比表面积明显增大;TG分析结果表明配体修饰负载型Pd催化剂的分解温度为378℃,反应温度要低于此温度;UV-Vis DRS结果显示配体与Pd产生了相互作用。  相似文献   

8.
以γ-Al_2O_3为载体,制备了Ni-La/Al_2O_3双金属选择性加氢催化剂,并用于催化裂化轻汽油的选择性加氢反应。考察了工艺条件对选择性加氢反应的影响。结果表明,二烯烃转化率和单烯选择性随着反应温度的升高而增加,但超过75℃二烯烃转化率已无明显增加,且单烯选择性下降;随着反应压力的升高,二烯转化率提高,但单烯损失较大;二烯烃转化率和单烯选择性随着空速的提高分别呈现下降和上升的趋势;氢气量应该严格控制,否则不仅造成浪费,还会使单烯损失增大。最佳的反应条件:温度75℃、压力1.0MPa、空速10h~(-1)、氢油比为8。在该条件下,催化裂化轻汽油中二烯烃转化率可达到97.8%,单烯烃损失小于2%。表明该催化剂具有良好的加氢活性和选择性,有很好的研究开发前景。  相似文献   

9.
通过后修饰法制备出高分散的金属纳米催化剂Au/SBA-15,并运用XRD对制备的催化剂进行表征。以糠醛加氢制糠醇的反应为例,考察反应温度、反应压力及反应时间等对催化剂催化性能的影响。结果表明,含金质量分数为1%、反应温度220℃、反应压力5MPa、反应时间4h、催化剂质量分数2%的条件下,糠醛的转化率为92.1%,选择性97.8%。经过6次重复实验,催化剂的性能没有明显下降。  相似文献   

10.
在Ni-Mo/Al_2O_3上催化裂化轻汽油的选择性加氢   总被引:2,自引:0,他引:2  
制备了以Al2O3为载体的镍基双金属选择性加氢催化剂,并用于催化裂化轻汽油的选择性加氢反应。考察了载体焙烧温度、金属镍与钼的负载量对催化剂选择性加氢性能的影响。结果表明,适当的焙烧温度降低了催化剂的比表面积和表面酸性,提高了催化剂的稳定性。助剂钼的加入有利于活性组分镍的均匀分散。在反应温度为80℃、空速为10h-1、氢油体积比为10、压力为1.5MPa的工艺条件下,采用Ni-Mo/Al2O3催化剂,催化裂化轻汽油中二烯烃转化率达到98%以上。制备的选择性加氢催化剂具有良好的活性和选择性,可以在选择性加氢领域获得应用。  相似文献   

11.
为解决钯(Pd)催化剂在选择性加氢中对目标产物选择性差的问题,添加第二金属M(M为Mn、Fe、Co、Ni),通过简单共还原法合成了PdM/C双金属合金催化剂;以3?硝基苯乙烯为模型分子,以H2作为氢源,研究了第二金属对Pd基催化剂选择性加氢性能的影响规律;采用XRD、TEM、气相色谱等方法对Pd基催化剂进行了表征与测试。结果表明,以纯Pd/C为催化剂,3?硝基苯乙烯加氢反应1.5 h,其转化率为100%,3?硝基苯乙烷的选择性仅为29%,过度加氢产物3?氨基苯乙烷的选择性为71%;引入第二金属后,PdM/C对3?硝基苯乙烷的选择性提升到75%~100%。其中,PdFe/C能将3?硝基苯乙烯完全加氢转化成3?硝基苯乙烷,且反应10次后,3?硝基苯乙烯的转化率仍保持在100%,3?硝基苯乙烷的选择性为99%,能够有效地避免过度氢化,实现3?硝基苯乙烯选择性加氢制备3?硝基苯乙烷。  相似文献   

12.
以十聚钨酸季铵盐([Bun Py]4W10O32)为催化剂、质量分数30%的H2O2为氧化剂,研究了环己醇催化氧化生成环己酮的反应,考察了反应时间、反应温度、H2O2和催化剂的物质的量等因素对此反应的影响。得出了此反应的最佳条件:反应温度为80℃,催化剂物质的量为0.06mmol,H2O2物质的量为125mmol,环己醇物质的量为50mmol,回流反应8h。在最佳反应条件下,环己醇的转化率为86.5%,环己酮的选择性可达到98.3%。反应后催化剂不溶于反应体系,简单过滤即可回收,重复使用3次后其活性基本不变。  相似文献   

13.
研究了以0 .8 % Pd/ C 为催化剂,硫化物为助催化 剂, 在酸性介质中硝基苯选择 催化氢化合成对氨基苯酚的反应条件。该反应 最佳条 件为:氢气 的压力 0 .2 M Pa , 催化剂 用量为 反应物 质量的 1 .2 % ,助催化剂与催化剂用量摩尔比为0 .6 ,硫酸溶液的质量分数为12 % ,阳离子表面活性剂0 .4 m L,反应温度为(85 ±1) ℃,反应时间为80 min 。研究 结果表明,选用易回收、低浓度 的0 .8 % Pd/ C 催化剂,对硝基苯氢化反应具有较高的活性,通过 添加助催化剂可明显提高 反应的选择性。合成产品通过 I R、 M S 确认其结构,并通过滴定氨基值计算出硝基苯的转化率为90 % 左右,产品的选择性达80 % 。该工艺生产成本比传统工艺低,工业污染小,操作简便,收率高,为工业化生产提供理论依据  相似文献   

14.
以顺酐和氢气为原料,以活性炭负载金属为催化剂,在加氢溶剂存在下,催化加氢制备丁二酸酐。考察了顺酐质量分数、氢分压、反应温度、反应时间和搅拌速度等对加氢反应效果的影响。在加氢溶剂存在下,顺酐质量分数30%,氢分压3.0MPa、催化剂质量分数为0.5%、反应温度80℃、反应时间为3h,搅拌速率200~250r/min的反应条件下,顺酐转化率在99%以上,丁二酸酐选择性大于90%,丁二酸酐收率大于80%。  相似文献   

15.
采用悬浮液涂层法对结构化堇青石载体进行修饰,然后采用浸渍法制备Pd/γ-Al2O3-堇青石结构化催化剂.考察了Pd负载量及焙烧温度对催化剂活性与选择性的影响,结果表明:0.5%是适宜的Pd负载量,673K和773K是适宜的催化剂焙烧温度.通过TEM、BET、XPS等手段对催化剂进行表征,结果发现负载量增加时催化剂分散度降低,适当提高催化剂焙烧温度能增加金属Pd的分散度,但XPS表征显示催化剂表面Pd原子分数却呈下降趋势.从Pd3d5/2结合能和半峰宽FWHM数据可知,高温焙烧可能产生两种形态的PdO,在673K和773K焙烧时生成了较多的有利于间二硝基苯催化加氢的PdO,因此其活性与选择性最佳.  相似文献   

16.
针对金催化剂制备过程的复杂性和氯离子残留问题,介绍一种负载型金催化剂Au/Al2O3的制备方法和考察该催化剂在环己烷氧化中的催化性能.采用浸渍-氨洗法制备Au/Al2O3催化剂,并应用电感耦合等离子体原子发射光谱(ICP-AES)、X射线衍射(XRD)和透射电子显微镜(TEM)对其进行表征.以氧气氧化环己烷制备环己酮和环己醇为研究对象,考察金质量分数、反应温度、压力、时间等因素对催化活性的影响.结果表明,随着金质量分数增加,金颗粒增大,催化剂的活性降低,在150℃、1.5MPa条件下反应3h,Au实际质量分数为0.58%的Au/Al2O3催化剂上环己烷转化率为8.96%,环己酮、环己醇和环己基过氧化氢三者的总选择性为93.52%.此外,循环实验表明Au/Al2O3催化剂具有一定的稳定性.  相似文献   

17.
以Keggin型杂多酸H5PMo10V2O40为活性组分,SBA-15介孔分子筛为载体,利用浸渍法制备了负载量为20%的HPMoV/SBA- 15催化剂.通过SAXRD、WAXRD和FT-TR光谱对样品进行了分析和表征,并将制得的负载型催化剂应用于苯酚叔丁醇烷基化反应,研究了不同反应温度下的催化性能.研究结果表明:H5 PMo10 V2O40杂多酸能均匀地分散于SBA-15孔道中且SBA-15的六方介孔结构得到了较好的保持;HPMoV/SBA-15催化剂在苯酚叔丁醇烷基化反应中具有很高的催化活性,当反应温度为190℃时,苯酚的转化率达到78.7%,4-TBP选择性为49.6%,2,4-DTBP选择性为25.8%,2-TBP选择性为24.6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号