首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
交流气体绝缘组合电器(GIS)和气体绝缘输电管道(GIL)内的运动金属微粒是诱发设备绝缘故障的重要因素,且特高压下的运动金属微粒引发设备绝缘故障的概率更大,而微粒陷阱可抑制金属微粒的运动,但实际工程中的微粒陷阱仍缺乏主动捕获微粒的能力。该文首先基于GIS/GIL内金属微粒动力学模型,分析了拔孔型陷阱的微粒主动捕获机制,进而根据金属微粒荷电运动与碰撞动力学特性,建立了拔孔型陷阱捕获概率计算模型,考虑陷阱的捕获能力对拔孔型陷阱的结构参数进行优化设计。具体结果表明,针对苏通工程中的特高压交流GIL,当陷阱直径为60cm、深度为30cm时,拔孔型陷阱抑制微粒效果达到最佳。进一步考虑微粒碰撞反射角的随机性,将拔孔型陷阱附近捕获率大于90%的区域定义为有效捕获范围,优化的拔孔型陷阱的有效捕获范围为32cm。最后,通过分析栅格型陷阱与拔孔型陷阱轴向电场分布,表明栅格型陷阱能够增强拔孔型陷阱的有效捕获范围,并以提高绝缘子附近的微粒抑制效果为目标,提出了绝缘子附近栅格型与拔孔型陷阱的协同布置方法。  相似文献   

2.
微粒陷阱是直流气体绝缘金属封闭输电线路(gas insulated metal-enclosed transmission line,GIL)中抑制金属微粒运动的主要手段,对其结构参数进行优化可以提高微粒捕获的效果。基于此,该文首先建立微粒运动的动力学模型,分析陷阱捕获微粒的机理,得到影响陷阱捕获效果的电场特征值,进而研究陷阱参数对电场特征值的影响;最后,基于鲸鱼优化算法对微粒陷阱的参数进行优化,并通过试验验证优化方案的可行性。结果表明:陷阱底部的电场强度随着槽宽的减小、厚度和槽数的增大而降低,且当厚度与腔体内径的比值大于0.16,槽数大于15后,逐渐趋于饱和;当陷阱厚度与腔体外壁内径的比值小于0.20时,厚度增大,其前方轴向的电场值变大。此外,微粒与高压电极碰撞后受到的朝向陷阱的电场力和电场梯度力是陷阱捕获微粒的关键,且陷阱厚度越大,微粒捕获效果越好。  相似文献   

3.
直流气体绝缘金属封闭输电线路(GIL)中的运动金属微粒会极大降低GIL的绝缘强度,故而需要采取微粒陷阱等措施加以限制。本文针对直流GIL中金属微粒陷阱开展研究,首先搭建了封闭式以及半封闭式同轴圆柱电极实验平台,并构建了对应的三维仿真模型;然后通过仿真计算优化了陷阱参数,据此提出了微粒陷阱设计依据"捕捉参数"-Pcap,并对比了不同参数的微粒陷阱捕捉效果;最后根据微粒运动规律提出了针对性陷阱布置策略,并用实验进行了验证。实验结果表明:金属微粒被捕捉的概率随捕捉参数增大呈现增大趋势,当Pcap值为0.8左右时捕捉概率趋于稳定;直流电压下绝缘子附近金属微粒的落点具有很强的集中性,在微粒落点集中区域进行针对性陷阱布置,可以缩短捕捉时间,取得良好效果。因此,研究结果可以为工程中微粒陷阱的设计及使用提供一定的指导。  相似文献   

4.
±800 kV特高压直流GIL关键技术研究   总被引:6,自引:1,他引:5  
为了提高特高压直流输电线路走廊选择的灵活性,研究可以替代部分架空输电线路的直流气体绝缘金属封闭输电线路(gas insulated metal enclosed transmission line,GIL)具有重要意义。提出了在进行直流GIL绝缘子相关试验时,以带绝缘子的圆柱平板电极替代带绝缘子的同轴圆柱电极的试验方法。结合国外小尺寸电极试验结果,采用麦夸特法拟合得到了考虑表面粗糙度的同轴圆柱电极SF6气体间隙下临界击穿场强估算公式。设计了包含微粒陷阱、微粒驱赶电极和屏蔽环的直流GIL电极结构,并对此进行了电场分布的仿真,结果表明此结构具有抑制金属导电微粒运动的作用。  相似文献   

5.
气体绝缘金属封闭输电线路(gas insulated metal-enclosed transmission line,GIL)中设置微粒陷阱是最常用的微粒抑制措施,由于其真型试验需投入较高成本验证设计能效,目前多采用仿真技术手段进行辅助分析。该文针对直流电压下微粒陷阱结构设计,考虑微粒的受力及电荷变化机制,基于有限元法提出一种可以应用于实际结构中的球形微粒带电运动的仿真方法。建立320kV直流GIL管母线部分模型,在模型中分别设置四种不同类型的微粒陷阱,计算并分析不同陷阱的捕获率及其对微粒运动特性的影响。结果表明,该方法能够有效模拟直流电压下的微粒运动特性,上提式微粒陷阱的捕获能效优异,能够有效阻挡动能较大的入陷微粒,降低其逃逸的概率。该文仿真计算方法和研究结果适用于不同结构气体绝缘输电线路中不同类型微粒陷阱的捕获率分析,对开展工程上气体绝缘输电线路中微粒陷阱的选型及布置具有指导意义。  相似文献   

6.
针对直流气体绝缘金属封闭输电线路(gas insulated metal enclosed transmission line,GIL)金属微粒污染物问题,研究球形金属微粒在其中的运动行为,采用贴合实际情境的同轴圆柱电极结构,建立直流 GIL 内球形金属微粒运动模型:纳入 SF6/N2混合气体动力学参数,利用流体力学理论分析微粒运动过程中混合气体阻力的影响;同时考虑金属表面粗糙度影响,利用弹性力学中的碰撞理论分析金属微粒与导体及外壳的非弹性随机碰撞,实验结果验证了模型计算的可靠性。利用模型对微粒运动轨迹进行仿真分析,并根据微粒运动的分布情况提出微粒活跃度的概念,研究表明:微粒在导体与外壳间的谐振频率与微粒半径、SF6占比、绝缘气压呈负相关;微粒活跃度与随机反射角、电压幅值呈正相关,而随着微粒半径变化存在极大值。  相似文献   

7.
直流气体绝缘输电线路的绝缘设计   总被引:1,自引:0,他引:1  
气体绝缘输电线路(gas insulated transmission line,GIL)与架空线路相似但占地空间小、损耗低,在高压直流输电和特高压直流输电领域具有较大的应用空间。通过分析表面电荷和金属导电微粒对绝缘子沿面放电的影响,指出了绝缘子表面电荷积聚和自由金属导电微粒附着是降低直流GIL绝缘性能的重要原因。采用了使电场分布合理的方法,即半圆锥形盆式绝缘子的优化和表面电阻率阶梯分布的覆膜。设计了包括电极覆膜、微粒陷阱、驱赶电极和屏蔽环的直流GIL的绝缘结构。  相似文献   

8.
王健  平安  常亚楠  胡智莹  李庆民 《电工技术学报》2023,(10):2794-2805+2831
直流气体绝缘输电线路(GIL)中自由金属微粒的活性较之交流GIL中更为活跃,对直流GIL的技术发展以及应用带来了严峻的挑战。目前,将各种抑制微粒手段进行主动式动态配合设计是未来发展的趋势。该文搭建直流GIL金属微粒主动式抑制的动态配合实验平台,并结合有限元仿真,从陷阱捕获率的角度优化了驱赶电极与陷阱间的位置配合;同时提出直流老练优化程序,最终获得主动式微粒抑制的动态配合有效方案。研究结果表明,当驱赶电极与陷阱间的距离为18 mm时,陷阱捕获率可高达70%;该文优化后的直流老练程序较传统程序可使陷阱捕获性能提升50%以上;最后通过实验验证了驱赶电极的有效性,且通过大量实验发现,高压电极布置驱赶电极后,陷阱捕获率可提高50%以上。因此,该文结果对提升直流GIL抑制金属微粒的能力具有一定的参考价值。  相似文献   

9.
金属微粒是引发交流GIS绝缘故障的主要原因之一,微粒陷阱作为抑制微粒运动的关键组件,尚缺乏微粒抑制机制与定量设计方法。文中搭建了真型GIS微粒陷阱捕捉过程观测平台,分析了微粒陷阱的捕捉机制,微粒陷阱对底部电场强度的抑制作用以及微粒运动的高度分布是影响微粒陷阱捕捉效果的关键因素。基于陷阱捕捉机制定义了微粒陷阱的危险系数,以评估微粒陷阱对不同特征微粒的捕捉能力,进一步建立了考虑微粒荷电碰撞运动特性的微粒陷阱捕捉过程仿真模型,仿真计算了不同参数微粒陷阱的危险系数与捕捉概率,获得了微粒陷阱的最优尺寸。提上高度为4 mm的110 k V微粒陷阱与提上高度为6 mm的220 kV微粒陷阱具有最佳的微粒抑制效果,最后通过实验验证了仿真优化结果的有效性。提出的微粒陷阱优化设计方法可为不同电压等级的陷阱设计提供定量指导。  相似文献   

10.
气体绝缘金属封闭输电线路(gas-insulated metal-enclosed transmission line,GIL)拥有输送容量大、占地面积小、传输损耗小等优点,但GIL内部的金属微粒会在电场的影响下发生起跳,严重威胁了GIL的绝缘,需要对金属微粒采取有效的捕获措施。为更好地捕获金属微粒,研究GIL内部的金属微粒在直流电压下的运动特性和落点分布是十分有必要的。文中首先对微粒在直流电压下的受力进行了分析;然后在不考虑屏蔽罩的情况下对金属微粒的运动轨迹和落点分布进行了仿真,发现金属微粒的落点较为集中,尤其是前几次的落点,故金属微粒陷阱应至少覆盖第一个落点,并尽可能囊括之后的几个落点;最后研究了屏蔽罩对金属微粒落点分布的影响,认为曲率较大的屏蔽罩会造成其下方两侧的落点更为集中,应在此处安装微粒陷阱。  相似文献   

11.
气体绝缘金属封闭输电线路(gas-insulated metal-enclosed transmission line,GIL)以其输送容量大、占地面积小、传输损耗小等优点,在许多场合是替代电缆和架空线路的首选方案。但GIL内部的金属微粒会在电场的影响下发生起跳和运动,严重威胁了GIL的绝缘性能。为更好地捕获金属微粒,掌握GIL内金属微粒的受力和运动特性是十分有必要的。本文首先忽略了盆式绝缘子对GIL轴向场强的影响,分析了金属微粒在同轴圆柱间的受力和运动特性,使用金属微粒谐振频率表征金属微粒在直流电压下的活跃度,并分析了电压和微粒半径对金属微粒谐振频率的影响规律。然后考虑了盆式绝缘子对GIL轴向场强的影响,得到了金属微粒的几种典型的运动轨迹。最后给出了对于金属微粒陷阱布置的建议,认为在盆式绝缘子凸面侧下方布置金属微粒陷阱是必要的。  相似文献   

12.
直流气体绝缘开关与输电管道(GIS/GIL)中线形微粒存在特殊的飞萤运动行为,即未碰撞地电极而反向运动或在高压电极表面悬浮运动,是影响直流GIS/GIL绝缘性能的关键因素之一。为厘清微粒飞萤运动物理机制,搭建了微粒飞萤运动观测与荷电量测试平台,获得了不同电压下线形微粒的运动与荷电特性。研究表明,线形微粒附近空间电荷导致微粒荷电量的极性变化,是产生飞萤运动的关键诱因,电极表面线形微粒的电晕起始电压是导致微粒荷电量极性改变的临界电压。进一步,基于直流棒板间隙的光电离模型计算了电极表面线形微粒的起晕电压,由测量结果拟合得到纳入起晕电压影响的微粒荷电量表达式,并结合电荷端部集中特性建立了线形微粒的荷电运动模型,由此提出飞萤运动的临界起始判据,实现了线形微粒飞萤运动的动态模拟。计算获得100kV直流GIL样机中不同尺寸微粒的飞萤起始电场强度,对于0.5MPa的SF6气体环境,直径0.2mm、长度5mm线形微粒的负极性飞萤起始电场强度为2.78MV/m,正极性飞萤起始电场强度为4.93MV/m。该研究在抑制微粒飞萤运动方面为直流GIL的主绝缘设计提供了参考依据。  相似文献   

13.
气体绝缘金属封闭输电线路(gas-insulated metal-enclosed transmission line,GIL)以其输送容量大、占地面积小、传输损耗小等优点,在许多场合是替代电缆和架空线路的首选方案。但GIL内部的金属微粒会在电场的影响下发生起跳和运动,严重威胁了GIL的绝缘性能。为更好地捕获金属微粒,掌握GIL内金属微粒的受力和运动特性是十分有必要的。文中首先忽略了盆式绝缘子对GIL轴向电场的畸变,分析了金属微粒在同轴圆柱电极间的运动特性;然后使用平均谐振频率和平均起跳高度来表征金属微粒在交流电压下的活跃度,分析了交流电压幅值、交流电压频率和微粒半径对平均谐振频率和平均起跳高度的影响规律;最后分析了在考虑盆式绝缘子影响下的金属微粒运动特性,可为金属微粒陷阱的结构设计和布置提供参考。  相似文献   

14.
《高压电器》2017,(10):36-43
由于直流气体绝缘金属封闭输电线路(GIL)具有传输容量大、电能损耗小、可靠性高和全寿命输电成本合理等优点,因此可在特殊环境下,如高落差、隧道和远距离大容量输电等场合替代架空输电线。而限制直流GIL在输电线路上大规模运用的一个重要原因就是自由金属微粒的干扰,因此有必要掌握自由金属微粒在直流电压下的运动和放电特性。文中总结了国内外关于直流电压下SF6气体中自由线形金属微粒运动与放电特性的研究,以期对工程建设和学术研究起到参考作用。首先介绍了线形金属微粒在直流电压下的受力分析及起跳电压计算模型;然后总结了线形金属微粒在GIL中可能的运动形式,以及当存在轴向不均匀电场时的运动情况;进而分析了线形微粒在直流电压下的电晕放电规律;最后,揭示了线形金属微粒对SF6气体间隙击穿的影响机制。  相似文献   

15.
直流GIL中线形金属微粒受力运动极易引发气体间隙击穿或者绝缘子沿面闪络,降低GIL的绝缘性能,严重影响直流输电系统的安全可靠运行.为研究直流GIL中线形金属导电微粒电动力学行为机理,搭建自由微粒实验装置和观测平台,并建立直流下微粒电动力学模型.通过实验与仿真相结合的方法,获得线形金属微粒荷电特性、启举与运动特性以及微粒运动导致的气隙击穿特性,并从微观角度解释了微粒启举与运动现象形成的原因.研究结果表明,线形启举电压只与半径有关,与长度和电压极性无关,随着半径增大,启举电压升高,直流电压极性不影响金属微粒启举电压幅值;线形微粒的运动及导致的气隙击穿与微粒半径、长度和电压极性有关,线形金属微粒半径小、长度增加时容易导致气隙击穿;线形金属微粒形状的不规则使得电场畸变作用加强,极性效应更明显.电晕极性效应导致正负极性下线形微粒的启举与运动及运动致气隙击穿特性呈现出明显的规律,当达到启举电压时,正极性下,线形金属微粒一端抬起后,在下极板小幅跳跃、旋转或者直立,难以贯穿气隙;负极性下,线形金属微粒贯穿气隙运动,极易出现飞萤现象,为直流GIL中线形金属微粒污染防治提供了理论指导.  相似文献   

16.
《高压电器》2017,(12):1-7
GIL中金属微粒与电极碰撞时会产生超声信号,研究超声特性对微粒运动的在线监测具有重要意义。搭建了直流电压下平行板电极中球形金属微粒运动的实验平台,实验得到了不同电压、直径下铝微粒与低压极板碰撞时的超声信号,并通过编制计算机程序提取了超声信号的幅值,超声信号幅值结果表明:同等条件下,随着电压、微粒直径的增大超声信号幅值增大。基于Ansys/LS-DYNA建立了铝微粒与电极碰撞的力学模型,仿真获得了微粒与电极碰撞过程中接触力变化,仿真结果表明:碰撞过程中接触力呈先增大后减小趋势,存在最大值。最后,对接触力最大值与超声信号幅值之间的相关分析表明:接触力最大值与超声信号幅值之间成正比关系。  相似文献   

17.
500 kV直流GIL支撑绝缘子的电场优化   总被引:1,自引:1,他引:0  
随着电网建设的日益深入,直流气体绝缘金属封闭输电管道(GIL)由于可用在高电压、大容量的场合,用作经济的长距离输电线路而被提上研究日程。直流GIL支撑绝缘子的沿面闪络很大程度上是由表面电荷积聚引起的。直流下GIL的内部稳态电场分布主要受环氧树脂固体绝缘的电导率和形状控制。以500 kV直流GIL为计算模型,借助COMSOL软件,研究了GIL中支撑绝缘子的形状、体积电导率和表面电导率对电场分布的影响。研究认为,半圆锥式绝缘子的电场分布是最优化的,绝缘子的体积电导率对其电场分布影响不大,通过控制绝缘子表面电导率,可以控制和优化直流GIL中绝缘子沿面电场分布。  相似文献   

18.
直流GIL具有输送容量大,占地面积小,可靠性高,受外界环境影响小等优势,在特殊环境中具有广泛的应用前景。然而直流电压下GIL内部气固界面电荷积聚及金属微粒的存在会导致GIL内部电场畸变、绝缘性能下降,甚至诱发沿面闪络,是限制直流GIL发展的重要因素。因此,论文总结了近年来关于直流GIL绝缘关键技术和GIL设备研制的相关研究,从气固界面电荷积聚机理与调控方法,GIL中金属微粒对绝缘性能的影响,绝缘材料沿面耐电性能,新型环保气体在直流GIL中的应用,直流GIL设备研制与试验和特高压直流GIL研制关键技术等6个方面进行总结评述,为高压直流GIL研发提供参考。  相似文献   

19.
直流气体绝缘金属封闭输电线路(GIL)可解决特殊地理环境下输电走廊空间限制问题,为构建“双碳”目标下中国未来能源结构提供装备基础。文中回顾了中国在直流GIL方面的研究进展,包括表面电荷及金属微粒动力学与抑制理论、导体表面形貌诱发的微电离理论等关键科学问题,以及绝缘件设计、微粒捕捉器设计等技术创新。此外,简要介绍了近年来中国在直流GIL的装备研发及设备评价标方面的进展。文中内容为未来直流GIL的研发及应用提供了参考。  相似文献   

20.
含金属微粒污染物变压器油的局部放电(partial discharge,PD)特性取决于微粒的运动行为。为了研究流动变压器油中金属微粒运动特性,在深入分析微粒受力的基础上,构建了基于层流状态的固–液两相流模型,仿真了直流均匀电场中不同油流速度下微粒的运动轨迹。为验证模型的正确性,搭建了金属微粒运动观测平台,获得了不同流速下平行板电极之间微粒的真实运动轨迹。实验结果与仿真结果相一致,二者均表明微粒在水平方向随着油流运动的同时,在竖直方向上下往复运动并与电极发生碰撞。此外,随着油流速率增加,微粒沉降过程所需的水平移动距离变长,相邻2次碰撞间的水平移动距离增加,导致了微粒与电极之间总的碰撞次数将减少。这解释了PD次数随油流速度减少的原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号