首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
廖敏  李强  姚勇  钟国坚 《江西电力》2009,33(6):28-30
随着电网建设的飞速发展以及电网光纤网络的不断完善,光纤电流差动保护在线路保护中的应用越来越广泛。光纤电流差动保护的关键是线路两侧装置之间的数据交换。要使两侧保护装置之间交换的数据准确,就必须保证两侧保护装置有精确的时间同步。文章从一则复用2M口光纤电流差动保护调试实例出发,分析了2M口时延产生的原因以及对保护装置测量数据的影响。  相似文献   

2.
智能变电站线路光纤差动保护当一侧采用全光纤电流互感器,另一侧采用传统电磁式电流互感器时.为保证光差保护投运后的安全可靠性,须对线路两侧的光纤差动保护装置同步性能进行测试.文中给出了一种集成测试环境下基于一次升流的线路差动保护同步性能的测试方法,基于此对不同厂家的线路差动保护进行同步性能测试.试验数据对比分析进一步表明了线路差动保护同步性能测试的重要性,保证了智能变电站投产的安全性。  相似文献   

3.
在使用电子式互感器的数字化变电站和使用电磁式互感器的传统变电站之间,实现差动保护的关键是两侧电气量的同步。提出了解决该问题的具体方法:数字化变电站侧的保护装置实时跟踪间隔合并单元的采样频率,传统化站的保护装置实时跟踪数字化站侧的保护装置的采样频率,从而实现两侧电气量的同步。工程应用证明该方案完全可行。  相似文献   

4.
数字化变电站光纤差动保护同步新方法   总被引:2,自引:1,他引:1  
在使用电子式互感器的数字化变电站中,实现差动保护的关键是两侧电气量的同步.提出了解决该问题的新方法:首先,通过统一时钟源完成数字化变电站侧的保护装置和间隔合并单元的同步;然后,通过插值法得到保护用交流量数据;最后,通过采样时刻调整法完成站间保护装置的同步,从而实现两侧电气量的同步.  相似文献   

5.
数字化变电站与传统变电站间光纤纵差保护研究   总被引:7,自引:0,他引:7  
在使用电子式互感器的数字化变电站和使用电磁式互感器的传统变电站之间,实现差动保护的关键是两侧电气量的同步.提出了解决该问题的具体方法:数字化变电站侧的保护装置实时跟踪间隔合并单元的采样频率,传统化站的保护装置实时跟踪数字化站侧的保护装置的采样频率,从而实现两侧电气量的同步.工程应用证明该方案完全可行.  相似文献   

6.
冯顺 《电工技术》2017,(4):17-18
针对光纤自愈环网中收发数据路由不一致导致线路两侧保护装置通道收发延时不一致的问题,理论分析通道收发不一致对区外故障差动保护的影响,讨论区外故障差动保护误动时比率制动系数与最小通道延时不一致时间及最小区外故障电流间满足的关系。  相似文献   

7.
故障行波特性对光纤差动保护时延的影响分析   总被引:2,自引:0,他引:2       下载免费PDF全文
电力系统差动保护对保护两侧电气量数据传输的实时性提出了更高的要求,过大的时延将会影响数据的同步精度从而造成差动保护误动或拒动。在实际运用中,必须充分考虑保护通道时延问题。而在特高压远距离输电系统中电气量的时延效应不容忽视,传统的时延分析方法没有考虑到电气量的行波效应。综合考虑了自故障发生到保护完成故障判断的过程中,电气量行波和光纤信号在各个环节的时延效应。由于故障发生的位置不同和光纤通信设备之间的差异性导致了总时延的不确定性,并通过三种随机型分布的概率时延模型来反映总时延的差异,并对结果进行了比较和分析。结果表明正态分布模型更适合时延分布规律,总时延可以作为保护装置的选型优化和两侧数据同步提供依据。最后运用正态分布模型对广域保护通信结构时延与网络节点的关系进行了分析。  相似文献   

8.
针对220 kV变电站线路光纤电流纵联差动保护装置在运行过程中出现光纤通道告警的相关案例进行了分析。首先,介绍了线路光纤保护系统及光纤通道传送保护信号的方式;然后,分析了光纤电流纵联差动保护的原理和光纤传输系统产生延时的原因,并研究了光纤通道延时对纵联差动保护产生的影响;最后,针对多个光纤通道告警的实际案例进行分析并提出了相应的应对措施。结果表明,光纤通道延时的大小等于整数倍的保护装置采样间隔时,可能会出现数据丢帧并引发通道告警,人为对光纤插件进行拨码配置并改变装置复用光纤通道延时可以消除告警。保护装置插件和2M装置本身出现故障会造成光纤通道告警,通过自环测试等手段确定故障区间并对插件进行更换即可消除告警。此外,装置告警信号接线异常、通道延时拨码错误等也会造成光纤通道报警,对其修正后可消除告警。  相似文献   

9.
提高微机变压器差动保护可靠性的研究   总被引:3,自引:3,他引:3       下载免费PDF全文
指出变压器差动保护装置容易误动和拒动的几个原因,并结合电气量的物理特征分析法、各侧电气量综合分析法和图形分析法,对变压器差动保护中采样异常、电流互感器饱和等关键问题进行深入分析,提出了解决的办法,同时从理论上证明了区内故障时差动电流和零序电流之间存在一定关系,利用这种关系可以可靠防止变压器差动误动.  相似文献   

10.
刘桂霞 《电气技术》2008,(10):77-80
介绍了光纤的基本结构及工作原理,介绍了光纤保护的类型,重点分析了光纤电流差动保护的原理及普通电流差动保护存在的问题,并具体阐述了RCS.943A型光纤电流差动保护装置的特点及具体应用.  相似文献   

11.
基于差动保护的同步调整方法,从理论上分析了通信通道收发不一致延时对光纤差动线路保护的影响,并计算了不同差动判据的保护所能耐受的最大收发不一致延时.借助电力系统全数字实时仿真装置 ADPSS 建立了 220 kV 双回线输电系统电磁暂态模型,对国内三种光纤分相电流差动保护装置进行了测试,记录并分析了各自耐受通道收发不一致...  相似文献   

12.
长距离的光纤传输系统常常应用FEC技术增加光纤信号传输的中继距离,改善信道的传输质量,但FEC技术的应用对线路保护通道时延产生一定的影响。基于FEC技术原理,分析了FEC技术处理信号的过程和影响线路保护通道时延的因素,并结合目前线路保护装置对传输通道的时延要求进行计算,为线路保护通道的设计和运行维护提供参考。  相似文献   

13.
用于线路差动保护的电流互感器饱和判据   总被引:9,自引:4,他引:5  
高压、超高压输电线路由于短路容量大,在短线路等特殊情况下区外故障会引起电流互感器饱和,使电流差动保护误动作,采用提高差动门槛及比例制动系数的方法会降低差动保护的灵敏度,增加保护的动作时间。介绍了一种短数据窗与分段积分法相结合的电流互感器饱和识别方法,该方法使电流差动保护能在区外故障,电流互感器饱和时不误动作;在区内故障时可靠动作,快速切除故障。目前,该方法已成功应用于基于32位DSP的数字式光纤电流差动保护装置。  相似文献   

14.
基于时钟差的线路电流差动保护数据同步方法   总被引:6,自引:0,他引:6  
沈冰  何奔腾  张雪松 《电网技术》2006,30(24):78-83
随着现代电力通信网的发展和完善,自愈环网或可变路由的光纤通道逐渐增多,给线路光纤差动保护带来了新的问题。现有的数据同步技术假设收、发通道延时一致,一旦通信路由发生改变,就会由于数据不同步而影响保护的可靠性。为此,文章通过引入装置时钟差的概念,提出了一种基于时钟差的数据同步方法,该方法以乒乓对时为基础、参考向量法对时作辅助,解决了自愈环网双向通道路由不一致时数据的同步问题,具有很好的实用价值。  相似文献   

15.
线路纵联保护中双向复用段倒换环动态时延特性   总被引:4,自引:4,他引:4  
介绍了双向复用段倒换环的工作原理。以苏州电力光纤通信网西外环为对象,研究了各种通道故障下复用段保护切换、恢复过程中通道时延的变化情况。研究结果表明:苏州电力光纤通信网西外环采用双向复用段倒换模式,即使在保护切换、恢复过程中也能保证通道双向时延一致,适用于包括采用数据通道同步方法线路纵差保护在内的任何线路纵联保护。  相似文献   

16.
2 Mbit/s差动保护通道技术分析及运行可靠性提高策略   总被引:1,自引:1,他引:0  
通过对基于2 Mbit/s通道电流差动保护技术、SDH光纤自愈环保护技术以及传输时延对2 Mbit/s复用保护影响等综合分析,结合2 Mbit/s通道电流差动保护在运用中存在的问题,提出了提高差动保护传输通道可靠性的方法和策略。  相似文献   

17.
电流差动保护在华为光传输网中的实现方案   总被引:1,自引:0,他引:1  
邹桂清 《电力系统通信》2009,30(12):34-36,45
利用光纤通道传输电流差动保护信息已大量应用于继电保护中。鉴于采用光纤电流差动复用2 M保护的E1通道不能做成自愈环,文章分析了保护业务接入光传输网的方式,并以华为光传输设备为例,介绍光纤电流差动保护在电力光纤通信网中的实现方案。  相似文献   

18.
一种适用于中低压短线路的光纤纵差保护方案   总被引:2,自引:1,他引:2       下载免费PDF全文
分析了中低压短线路纵差保护的现状,对电流综合量继电器与普通电流继电器在各种短路情况下的灵敏度比较,复式比率差动继电器与常规比率差动继电器在各种短路电流情况下的动作性能比较等进行了研究。提出了一种适用于中低压短线路的复式比率电流综合量差动保护原理方案。此方案可提高保护的灵敏度,同时为光纤纵差保护采用异步通信方式提供可能,达到降低保护装置成本的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号