首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
提出了基于小波技术的电磁时间反转(WEMTR)理论的柔性直流输电线路故障测距原理。对线路两端故障电流的1模量进行小波分解,提取有效信息;将所提取的有效暂态量以时间轴镜像,即进行时间反转;再将时间反转后的电流量作为电流源并联在无损镜像线路两端,并在无损镜像线路上各处都假设发生故障,计算各个假设故障的接地电流有效值;假设故障电流有效值最大处即为所求故障点处。理论证明,该方法不受过渡电阻和故障类型的影响。在PSCAD/EMTDC搭建了基于模块化多电平换流站的高压直流输电系统进行仿真验证,输电线路采用相域频变分布参数模型。结果表明,不需要高采样率,该方法可以得到精确的故障测距结果。  相似文献   

2.
该文系统地论证了电磁时间反转(electromagnetictime reversal,EMTR)在电力系统线路故障测距中的理论应用基础。递进式地论证了在不考虑反射波的线路中、考虑反射波的线路中、考虑混合参数线路中的故障测距理论。故障测距理论证明分为4步:1)计算出被测电气量的理论值,并将其时间反转(或在频域中取共轭);2)建立线路传输方程空间的镜像空间(或称镜像线路);3)基于时间反转后的电气量,在镜像线路中建立电磁场源;4)在镜像线路中假设故障点,并计算假设故障点处的故障电流有效值,遍历镜像线路每一点,证明假设故障电流有效值的极值处为实际故障点。线路分布式电容、过渡电阻、故障类型在理论研究证明中均被考虑。  相似文献   

3.
为了解决非全程同杆双回输电线路故障测距中存在的双端数据不同步以及伪根识别的问题,首先利用故障区段识别函数组的正负相位特性确定故障发生的区段。在确定故障区段的基础上,采用了一种基于电磁时间反转的频域前行电流法进行故障测距。然后将故障区段两侧的电压、电流解耦后进行快速傅里叶分解,提取工频分量下的电流前行波并求取共轭。最后计算假设的各个故障点处的电流有效值大小,当有效值为最小时,该点即为故障点。仿真结果表明:该方法不需要双端数据的同步,没有伪根识别问题,同时也不受过渡电阻和故障类型的影响,能实现对非全程同杆双回线的准确故障定位。  相似文献   

4.
求解频域参数方程的双端故障测距原理   总被引:8,自引:8,他引:0  
提出一种新的频域法双端测距原理。该测距原理无须知道被测线路的准确参数,而将输电线路电阻、电感、电容等参数作为待识别参数,利用故障暂态电流、电压丰富的频谱信息,结合故障暂态响应中测量点电流、电压频域网络方程,采用参数识别的方法求解故障距离及输电线路参数, 克服了传统双端测距方法因线路参数不准确引起的测距误差。EMTP仿真表明该方法具有较高的测距精度。  相似文献   

5.
为了精确识别直流配电网故障线路,缩小失电范围,并降低支节点附近故障选线盲区,提出了基于变相位系数–电磁时间反转(variable phase coefficient-electromagnetic time reversal,VPC-EMTR)的多端故障选线方法。该方法根据配电网拓扑和线路参数建立了无损镜像线路网络,利用测量点处的时间反转后的1模电流在无损镜像网络中建立电流源,并计算该线路网络中每一点处的假想故障的故障电流有效值,最大有效值所处线路即为故障线路。该方法设置各镜像支路的相位系数与其长度呈高斯分布函数关系,使得支节点附近的故障测距结果偏移至线路中间处。同时,该方法利用最少测量点二次计算故障选线结果,减少了多余测量点对选线结果的影响,保证了故障选线结果的可靠性。在理论上对该方法进行了证明,并在PSCAD中建立了"手拉手"型多端直流配电网络来验证该方法的有效性,仿真结果表明:基于VPC-EMTR的多端故障选线法的选线结果准确,能够减少支节点附近选线的盲区。  相似文献   

6.
为了改善超高压输电线路沿线电压分布和无功分布,减少潜供电流,加速潜供电弧的熄灭,限制系统过电压等,一般要安装并联电抗器.利用线路两端母线处的暂态电压电流进行故障测距,会因为并联电抗器的安装存在较大误差.本文基于线路的分布参数模型,考虑高压长输电线路两端电抗器的影响,构造了新的频域测距方程;为了消除线路参数的测量误差对测距结果的不良影响,把输电线路的长度、电阻、电感等参数与故障距离—同作为未知参数,建立线路故障网络的频谱方程;然后提取故障暂态电压电流的工频信号与自由分量,并求解方程组;最后将该测距算法应用到带多个并联电抗器超高压长输电线路的故障测距.电磁暂态仿真程序仿真数据表明,该测距算法具有较高的计算精度,测距精度不受过渡电阻、系统不同步角的影响,具有较强的稳定性.  相似文献   

7.
传统工频原理距离保护易受风电系统故障特征的影响,基于集中参数模型的时域距离保护原理较适应于风电系统送出线。但考虑到该原理忽略分布电容的影响,当故障发生在风电系统长距离送出线时,可能造成距离I段保护发生暂态超越现象。因此,提出一种基于分布参数模型的风电系统长距离送出线时域距离保护原理。基于分布参数模型,通过保护安装处的电压、电流时域信息求得距离I段整定处的电压、电流时域信息,代入时域故障测距方程中,求得整定点与故障发生处的故障距离。通过与距离I段整定距离求和获得故障测量距离,实现保护动作。仿真结果表明,该原理不受长距离送出线分布电容的影响,具有较强的抗过渡电阻性能,优越于基于集中参数模型时域距离保护。  相似文献   

8.
基于参数识别的单端电气量频域法故障测距原理   总被引:20,自引:2,他引:20  
在分析故障网络方程基础上,提出了一种新的频域法测距原理。该方法将对端系统电阻、电感、故障点过渡电阻和故障距离作为待识别参数,利用故障暂态电流电压丰富的频谱信息,结合故障暂态及稳态响应中测量点电流电压频域网络方程,采用参数识别的方法求解故障距离及对端系统参数,从原理上克服了传统单端测距方法受系统阻抗影响的缺点,方法简单可靠,此外,文中给出了一种从离散采样数据值中提取频谱的方法,EMTP仿真表明文中方法具有较高的测距精度,可方便地推广到线路为R-L模型和分布参数模型的情况。随着光互感器的成熟和应用,该方法有望得到实际应用。  相似文献   

9.
一种小电流接地系统单相接地故障测距新方法   总被引:5,自引:0,他引:5  
提出了一种基于广域同步信息的故障测距新方法,该方法基于线路的分布参数模型,利用横向故障电流与故障距离的关系构造了一个测距函数,利用线路两端的电压、电流同步信息,同时每假设一个故障点距离就可求出与之对应的横向故障电流值,在整条线路上利用迭代搜索的方法可求出唯一的一个最大横向故障电流,该电流的对应距离即为实际故障距离。大量仿真结果和现场试验均表明此方法具有较高的可靠性和测距精度,并且可以推广到其他类型的故障测距计算。  相似文献   

10.
针对牵引网目前广泛应用的故障测距算法易受整次、非整次谐波、机车负荷以及线路参数波动的影响,提出一种利用线路单端暂态电压进行精确故障测距的新算法。通过理论分析得到测量段等效阻抗的谐振频率与故障暂态电压、电流频谱极大值频率相对应的结论。进一步根据测量端等效阻抗的谐振频率与故障距离相对应的关系建立测距公式,采用频域法分析故障暂态信号在高频段的频率特性,实现精确测距。通过EMTDC仿真验证,该算法基本不受过渡电阻、机车及线路参数小范围波动等因素的影响,测距结果准确且鲁棒性强,具有较高的工程应用价值。  相似文献   

11.
针对输电线路最常发生的单相接地故障,以最小二乘矩阵束算法为基础,提出了一种在线路末端故障时计算距离准确、在线路末端附近故障时计算距离具有正误差现象的频域距离保护算法。该保护算法的核心是假设故障点之后的零序回路为纯电感线路,列写出在频域具有3个未知变量的线性测距方程。电磁暂态仿真程序的仿真试验表明,在集中参数模型的短距离输电线路上,该保护算法在线路末端故障时测距准确,在线路末端附近经过渡电阻接地故障时不存在超越问题。  相似文献   

12.
高压柔性直流输电采用架空线路,运行环境复杂,难以避免故障。快速准确的故障定位可以缩短故障清除时间,对于快速恢复供电十分重要。现有测距算法依赖暂态波头辨识,受到干扰后测距精度会下降。针对上述问题,在线路分布参数模型基础上,在时域中通过电报方程计算线路沿线分布的电压和电流,进而根据故障点处电阻值相对稳定这一特性构成测距判据。由于输电线路两侧的直流断路器重合时间并不一致,此时先重合一侧的系统才会继续向故障点馈入短路电流,因此通过单端量便可实现测距。所提测距方法无需通信,适用于各种故障类型并且所需窗长较短,具有耐受过渡电阻和噪声的能力。最后利用PSCAD/EMTDC电磁暂态仿真软件搭建±500 kV多端柔性直流输电系统模型,仿真结果验证了所提测距算法的准确性和适用性。  相似文献   

13.
提出了一种基于频变参数模型的高压直流输电线路距离保护方法。该方法的主要原理是将线路的频变参数特性用补偿矩阵表征,从而将频变参数模型传输矩阵分解为理想分布参数模型传输矩阵与补偿矩阵的级联,并在实际应用中将该补偿矩阵用有限冲激响应(FIR)滤波器实现。在此基础上,用保护安装处的电压电流准确地计算保护整定点处的电压电流;然后,以整定点为观测点,通过解时域微分方程求得故障距离。所述算法提高了直流线路末端故障的测距精度,容易在时域实现且动作快速,显著改善了高压直流输电线路距离保护的动作性能。  相似文献   

14.
风电场送出线等传变距离保护   总被引:4,自引:0,他引:4       下载免费PDF全文
分析了具备低电压穿越(LVRT)能力的双馈式风电场送出线路故障暂态特性。风电送出线路风场侧保护测得的电压与电流主要频率分量不一致,致使传统的依据工频电压、电流相量的距离保护元件动作性能受到严重影响,无法正常工作。基于输电线路时域模型的解微分方程算法不涉及信号的频域信息,可以克服送出线电压、电流主频不同带来的影响,但受高频分量的影响较大。等传变距离保护相较传统的解微分方程算法,增加了低通滤波及故障点电压重构两个环节,显著改善了算法的测距性能。PSCAD/EMTDC仿真结果表明,线路不同位置处发生不同类型故障时,等传变距离保护算法均可以实现快速、准确测距。  相似文献   

15.
林梅芬 《电工技术》2019,(11):40-43
双端测距时线路参数随运行情况变化及双端数据不同步问题,对线路故障准确测距有明显的影响。在不忽略线路首末端电压电流相量幅值可能变化的情况下提出一种消除不同步角影响,利用非线性方程组准确求解线路参数的方法。先利用求解出的线路参数结合双端电气量数据求出非同步角;再利用准确求得的线路参数、非同步角,合理选择故障后双端电气量数据,由测距公式求解出故障距离。算例仿真显示该方法能较大程度提高测量精度。  相似文献   

16.
针对长输电线路补偿算法采用传统距离保护测距方程后耐过渡电阻能力不强,在保护范围末端发生高阻接地故障时保护容易超越的问题,提出了一种新的基于参数识别的时域长输电线路接地距离保护算法。故障发生后,采用引入插值法的Bergeron模型,利用保护安装处的电压电流来计算线路末端的电压电流,在线路末端应用所推导出的可用于长输电线路分布参数的具有3个系数的时域解微分方程算法来计算故障距离。当计算距离小于保护整定距离时,判为区内故障,保护动作跳闸;否则,保护不动作。理论分析和仿真实验证明,该算法不受长输电线路分布电容和故障暂态的影响,动作速度快,耐过渡电阻能力强,在300km长输电线路、300Ω过渡电阻条件下,保护可靠动作,不会发生超越。  相似文献   

17.
同杆四回线参数自适应双端故障测距频域算法   总被引:3,自引:1,他引:2  
为了消除同杆四回线相间和线间耦合问题及线路参数不确定性对同杆四回线故障测距的影响,提出了适应于同杆四回线故障测距的模变换分析方法.对同杆四回线的电压和电流信息进行解辐处理,提取不受系统阻抗影响的环流模分量,构建基于环流模分量的同杆四回线频域故障测距观测方程;为解决线路参数多变性影响,利用故障前冗余电压和电流信息,构建线路参数自适应的频域观测方程,以获得准确的线路环流模分量的基频参数,从而提出了一种同杆四回线参数自适应的双端故障刚距频域算法.利用ATP/EMTP电磁暂态仿真软件,构建同杆四回线JMarti仿真模型,通过全面的仿真分析验证,证明所提出的测距方法能消除同杆四回线相间和线间耦合问题以及线路参数的不确定性影响,具有较高的故障测距精度.  相似文献   

18.
基于参数识别的时域法双端故障测距原理   总被引:7,自引:4,他引:7  
提出了一种基于参数识别的时域法双端故障测距原理。无需已知被测线路的准确参数,而将输电线路电阻、电感、电容等参数作为待识别参数,分别由线路两端电气量采样值计算沿线的电压分布,利用故障时只有故障点处电压相等的基本原理识别出准确的线路参数并计算出故障点位置, 克服了传统测距方法因线路参数不准确而引起的测距误差。该测距方法采用故障距离占线路全长的比例表示故障定位结果,该结果不受季节、弧垂等变化的影响,便于利用杆塔的地面距离估测出故障点位置。ATP仿真结果表明该方法具有较高的测距精度。  相似文献   

19.
基于考虑多阶距离无穷小的高压直流输电线路分布参数时域模型,提出了一种高压直流输电线路单极接地双端故障测距方法。利用粒子群算法来搜索整条线路沿线电压分布差值最小的对应距离,即为实际故障距离;为便于高阶求导和平滑数据中的扰动,采用麦夸特法来拟合直流故障暂态数据。与Bergeron模型进行对比,结果表明所提方法对采样率要求低,抗噪声能力强,测距结果平稳,可以实现直流输电线路全线范围内的准确定位,且测距结果不受过渡电阻和故障位置的影响。  相似文献   

20.
双端不同步线路参数自适应时频域故障测距算法   总被引:5,自引:2,他引:3  
故障测距时域法所需时间窗短,能弥补频域法的不足,但考虑线路参数不确定及双端不同步影响时,其精度和稳定性偏低。利用故障前正常状态的稳态工频相量,建立含双端不同步时间差和线路工频参数的自适应观测方程,利用粒子群优化 — 最小二乘混合算法求解;建立Bergeron模型的故障测距时域观测方程,应用粒子群优化算法求解,实现双端数据不同步及参数自适应的时频域故障测距。通过建立1 000 kV特高压输电系统模型进行全面仿真验证,结果表明,所提出的故障测距方案能在较短时间窗内实现准确故障测距,且不受线路参数变化及两端数据不同步的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号