首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
利用热重-质谱联用技术对煤泥热解特性进行研究,分析含水率和升温速率对煤泥热解产物析出现象的影响。结果表明:主要热解产物依次为CH4、HCN、CO2、C3H7+、C2H6、C3H5+,其析出温度均分布在350~650 ℃和650~900 ℃;含水率对热解产物的析出特性影响较小,CH4、HCN、C2H6与C3H5+析出强度峰值在500 ℃左右,CO2及C3H7+的析出强度峰值分别在500、700 ℃左右;升温速率对热解产物的析出特性影响较明显;随着升温速率提高,产物析出峰值均向高温区段移动,4种热解产物的析出强度均呈增大趋势。  相似文献   

2.
为了探究煤与生物质在中高温度条件下共热解过程中热解气的释放特性及元素析出规律,本文采用固定床反应器对松木和兖州煤在800~1 200 ℃温度下进行中高温热解实验,借助傅立叶红外气体分析仪和氢气分析仪对热解气的组分进行在线测量,并探索其动力学释放特性。结果表明:各热解气中可燃气体主要为H2、CO和CH4;热解温度升高,共热解气中的H2产量会大幅增加,高达75.4 mg/g反应物,CO产量缓慢增加至184.3 mg/g反应物,CH4产量下降;共热解过程中,H2析出最晚且过程在30~200 s,CO的释放过程比CH4快,且释放体积分数峰值更高,可达61.1 μL/L;生物质的氮结构存在形式主要为更不稳定的氨基酸和蛋白质,热解时NH3和HCN析出更快但释放峰值更低;此外,煤和生物质共热解时的协同作用不影响CO和CH4的释放。本研究可为未来煤与生物质中高温闪速共热解制气以及低碳清洁能源的利用提供一定指导。  相似文献   

3.
利用热重红外分析仪(TG-FTIR)对木质素进行热重分析及主要气相产物分析,结合红外光谱对木质素不同热解阶段生成的半焦进行研究。实验结果表明:木质素热解分为3个阶段,200℃以下为自由水挥发过程;200-550℃为主要热解阶段,此过程中木质素苯环周围的官能团发生断裂,析出部分气体产物及焦油产物;550-900℃过程中,苯环发生解链或芳香缩聚成碳。通过FTIR的研究发现,木质素热解过程中,析出的主要气体包括H2O、CO2、CO以及烃类产物CH4等,CO2析出存在2个温度区间低温段(250-450℃)和高温段(650-750℃),而CO在高温段大量生成,CH4的析出主要集中在在300-600℃温度区间。  相似文献   

4.
CO_2气氛对烟煤热解过程的影响   总被引:2,自引:0,他引:2  
采用热重–傅里叶红外联用的方法研究徐州烟煤在Ar、N2和CO2气氛下的热解特性,考察CO2气氛下反应终温和升温速率对其失重和气体析出特性的影响。结果表明,CO2气氛对煤热解的影响主要在高温区,表现为对煤中碳酸盐分解的抑制作用和对煤焦的气化作用。反应终温900℃时,CO2气氛下CH4和C2H6的析出量较Ar和N2气氛下小,而CO析出量较大。CO2气氛下反应终温由700℃上升到1000℃,CH4和C2H6的析出量略有升高,CO析出量显著升高;升温速率提高,CH4、C2H6和CO析出量降低。  相似文献   

5.
生物质再燃还原NO_x的机理分析   总被引:1,自引:0,他引:1  
生物质是用于煤粉炉再燃脱硝的重要燃料。分析了生物质快速热解还原NOx的机理。生物质热解的主要产物是H2、CO、CO2、CH4、C2H2、C2H4、C2H6、C3H6、C3H8、焦炭、焦油和灰分等。生物质中的氮热解转化为HCN和NH3,二者对还原NOx有很大的影响。生物质再燃主要是通过碳氢化合物还原NOx,HCCO+NOx和CHi(特别是CH3)+NOx是最重要的反应,CHi在CH4脱硝过程中最重要,HCCO在C2脱硝过程中占主导作用。CO、H2、焦油和灰中的碱金属对还原NOx起到一定的促进作用。  相似文献   

6.
农药生产废渣燃烧/热解特性研究   总被引:3,自引:0,他引:3  
在30 ℃/min升温速率下,利用热重分析方法对农药生产废渣热解和燃烧过程进行了分析,发现农药废渣燃烧过程可以分为两个阶段:150~400 ℃和400~600 ℃。在600 ℃时,农药废渣的燃烧反应程度已经达到了96%。农药废渣热解和燃烧过程的第1个失重阶段基本重合。利用Achar法求得了农药废渣燃烧和热解过程的反应机理函数,以及表观动力学参数。分析发现热解与燃烧第1阶段的反应机理函数相同。利用热重–傅里叶变换红外光谱分析对30 ℃/min升温速率下农药废渣热解和燃烧过程中的气体析出情况进行了分析,发现农药废渣热解过程中,有大量的SO2析出,SO2的析出集中在300~600 ℃区间内,在此区间内,还有少量的CO2和H2O析出,CO的析出主要在高温段发生。对燃烧条件下的FTIR分析表明,氧气的存在使得SO2的析出提前,农药废渣中的N在较低温度下以NH3的形式释放,而在热解条件下,农药废渣中的N的释放主要是高温区生成的HCN。  相似文献   

7.
利用TGA-FTIR联用技术对两种煤在惰性气氛下热解进行了研究,热解终温为1000℃,升温速率分别为20、30和40℃/min,并在线分析了热解产物中的CO、CO2和CH4的生成规律。结果表明,热解组分的析出随温度变化的规律一致,产物的最大量发生在510℃。通过对红外吸收光谱的分析发现,煤热解的挥发分成份的产率与煤化程度有关。煤中的氧含量越高,CO和CO2的释放量越大;氢含量越高,烃类气体释放量越大。  相似文献   

8.
在间接加热套管式热解提油试验台上,研究了循环流化床双床热解气化系统中热解炉稀相区温度对产物的影响规律。试验结果表明,热解温度从500℃升至700℃时,水收率、焦油收率及热解气收率均增加;随热解温度升高,半焦中挥发分残存率不断降低,700℃时煤中17.44%的挥发分在稀相区受热析出,大部分水分已经析出,半焦中固定碳残存率基本不变。焦油样品中甲苯不溶物及沥青质含量均较低,热解温度升高至700℃后沥青质含量增加;热解气中除C3H8外,其余组分产率均随热解温度升高不断增大;热解气组分分布在3个区间,其中H2达39%以上,单碳类气体(CO、CO2、CH4)处于10%~25%范围内,C2和C3类气体均小于6%。  相似文献   

9.
再燃煤粉轻质挥发分动态析出特性实验研究   总被引:1,自引:0,他引:1  
在一管式炉上对煤粉高温热解小分子挥发分的动态析出特性及产量、构成等进行了研究。实验选择从烟煤到无烟煤的4种煤,热解温度范围在800~1 200 ℃。实验结果表明:随着热解温度的升高,在动态析出峰值上,HCN、C2H2、CO、H2持续增大,C2H6持续减小,而NH3、CH4及C2H4则是先增大后减小;在各物质析出产量上,HCN、CO、H2随温度而增加,CH4、C2H6随之下降,而NH3、C2H2、C2H4则存在一个最大析出值;烟煤挥发分平均分子量随温度升高而变小,无烟煤则是先变小后增大,在整体上烟煤的挥发分平均分子量要大于无烟煤。此外,在各种研究的小分子挥发分物质中烟煤的析出量均要大于无烟煤的析出量,CO、H2的最大析出量分别与煤中的氧及氢含量多少相对应。  相似文献   

10.
醋酸钙镁高温脱硫脱硝实验研究   总被引:1,自引:2,他引:1  
为了控制燃煤污染气体的排放,研究了醋酸钙镁脱硫脱硝机理。采用热天平研究醋酸钙镁高温煅烧质量变化特性,利用红外光谱仪定性分析煅烧析出气体,在一维沉降炉进行钙煤混燃脱硫脱硝实验。醋酸钙镁煅烧过程中析出丙酮气体,热力学平衡计算表明,低温下丙酮的热解产物主要以CO和CH4为主,而在高温下,热解产物主要以H2、CO和C2H2为主。高温煅烧后,钙基颗粒中空多孔,孔隙主要以中孔为主,比表面积主要集中在孔径为4.7 nm的孔,比表面积远大于石灰石钙基。一维炉实验表明,高温低氧有利于脱除NOx,而低温高氧有利于脱除SO2,高温下醋酸钙镁表现出良好的脱硫脱硝效果。因此,醋酸钙镁是一种具有同时脱硫脱硝能力的优良吸收剂。  相似文献   

11.
应用TG-FTIR研究鹤岗烟煤的热解特性   总被引:1,自引:1,他引:1  
采用TG-FTIR联用技术研究了鹤岗烟煤的热解过程。研究表明,在升温速率为30℃/min时,该煤的热解过程可以分为4个阶段,其中在430~650℃区间发生剧烈热解反应,DTG曲线在489℃时出现最大值。热解气体的逸出情况由FTIR进行实时检测,并且定性分析了CH4、CO2、CO和焦油的析出情况。通过比较TG/DTG曲线和FTIR数据,发现TG和FTIR的分析结果是一致的。假定煤热解反应为一级反应模型,分不同的温度区间采用Coats-Redfern法求解煤热解反应动力学参数,计算结果与实验符合较好。  相似文献   

12.
温度对棉杆热解多联产过程中产物特性的影响   总被引:6,自引:1,他引:5  
生物质热解多联产是对生物质高值化转化的良好工艺之一。该文研究了温度对棉杆热解多联产过程的影响,主要分析了棉杆热解过程中气、液、固产物的分布特性与物化结构。研究表明随着温度的上升,气态产物增加,焦炭产量降低。采用气相色谱仪分析气体产物的分布特性,CO2主要在250~450℃之间析出,氢气主要在550~850℃之间析出,氢气、甲烷的含量最高为33%、9.8%,其热值可达11MJ/m3。采用气质联用仪分析液体产物的组成特性,液体产率达到40%,水分达到液体组成的60%~70%,液体中有机成分以乙酸、苯酚类物质为主。采用氮气等温吸附实验和傅里叶红外光谱分析焦炭的物理化学特性,随着温度的上升,焦炭的孔隙度先增加后降低,各种官能团逐渐减少;焦炭比表面积、低位热值最大可达到232m2/g、28MJ/kg。  相似文献   

13.
热解过程中棕榈壳焦的物化结构演变特性   总被引:2,自引:1,他引:1  
该文主要对生物质热解过程中焦炭物化结构的演变特性与转化机理进行分析研究。在固定床反应器上,以棕榈壳为样品,热解终温从300~1 000 ℃下制得焦炭,采用比表面积和孔径分析仪与傅里叶红外光谱仪等用对不同温度下所得焦炭的物化结构进行深入分析。研究发现煤焦的表面孔隙结构的形成和丰富主要集中在400~600 ℃,随着碳化温度的升高,孔面积先增大后减小,在约600 ℃有较高的比表面积;棕榈壳焦内的有机官能团(C=O,C-C,C-H,C-O 和 OH等)的断裂和缩合也主要发生在中低温度段,同时固体焦内,碳的含量逐渐增加,而氢元素的含量逐渐减少。  相似文献   

14.
锰酸锂动力电池滥用条件下安全性能研究   总被引:1,自引:0,他引:1  
刘云建  吕军 《电源技术》2011,35(6):652-655
采用商品化的LiMn2O4和石墨作为正负极材料制作锰酸锂动力电池(347080-16Ah),测试其热冲击,穿刺,短路和过充安全实验。研究发现,电池经过热冲击、穿刺和短路测试后,电池未发生爆炸起火现象。但是3C/10V过充后,电池发生爆炸,并放出大量黑烟,电池表面最高温度达到290℃。黑烟的主要成分是CO2、CO、H2、CH4、C2H6、C2H4和炭黑,爆炸后的粉末主要成分为C、MnO和Li2CO3。  相似文献   

15.
为研究生物质热解气在部分氧化条件下的反应特性,更好地预测气相产物的反应行为,建立一个管流反应区内的热解气部分氧化反应模型.选用苯酚,甲苯,苯,萘4种物质作为焦油模型化合物,小分子气体由CO、CO2、CH4、H2、N2和O2组成.搭建一个连续性实验台用以验证模型.结果显示,模型对于小分子气体的变化趋势能够较准确地预测,但定量预测仍存在一定的误差:对于焦油总最及变化趋势方面较为准确.与实验结果相比,该模型能够定性地反映生物质热解气部分氧化条件下的反应规律.  相似文献   

16.
在自建的固定床试验台上研究氧量对医疗废物控制空气氧化过程的影响规律。试验总进气流量为0.8 m3/h(室温下),O2浓度从0%变化到21%。结果表明,控制空气氧化过程可以分为床层温度升高,挥发分大量析出、平稳的少量挥发分析出并与O2反应以及挥发分析出基本结束,反应逐渐结束3个阶段。O2浓度每增加3%~6%,床层温度增加约10~20℃。随着O2浓度的升高,半焦产量持续降低,气体的产量持续明显增加,而液体产量先增大后减小。气体成分中,CO2、烃类总量、C2H4、C2H6和C3H6产量随着O2浓度的增加而增加;CO、CH4和C3H8产量的变化规律一致,当O2浓度为14%,产量分别达到各自的极大值。研究为在实际设备中通过调节进气量从而有效控制反应过程提供了参考数据。  相似文献   

17.
用共沉淀法制备一系列六铝酸盐催化剂样品(LaMeAl11O19,Me=Mn、Fe、Co、Ni、Ni、Ce),采用X-射线衍射(X-ray diffraction,XRD)、比表面积测试法(Brunauer-Emmett-Teller,BET)和X-射线光电子能谱(X-rayphotoelectron spectrometry,XPS)等方法对样品结构进行表征,并通过生物质气化气中可燃气体成分(CH4/CO/H2)的模拟燃烧试验,考察不同过渡金属离子取代对催化剂结构特征及催化燃烧活性的影响。利用原位红外(in-situ DRIFT)方法研究了气体在催化剂表面反应的机制。结果表明,焙烧后催化剂形成具有相同的MP结构、但化学组分不同的六铝酸盐,且具有较大的比表面积。LaMeAl11O19催化剂对模拟生物质气化气中可燃成分燃烧均具有一定的催化活性,添加Mn离子时催化剂对甲烷的催化燃烧活性最好。各可燃气体起燃温度自低至高为CO、H2、CH4。150℃时CO已在催化剂表面发生吸附,250℃出现气相CO2的吸附峰,同时检测到反应气中H2被催化剂内部晶格氧所氧化生成的水分子吸附峰。气相CH4的吸附峰在反应开始(150℃)时就已形成,其强度和位置不随温度和时间变化。  相似文献   

18.
刘云建  沈湘黔 《电池工业》2010,15(5):284-288
采用商品化的LMnO4和石墨作为正负极材料制作锰酸锂动力电池(347080-16Ah),并对其进行热冲击、穿刺、短路和过充安全等试验。试验结果显示,电池经过热冲击、穿刺和短路测试后,未发生爆炸、起火现象;但是3C/10V过充后,电池发生爆炸,并放出大量黑烟,电池表面最高温度达到290℃;黑烟的主要成分是CO2、CO、H2、CH4、C2H6、C2H4和炭黑,爆炸后的粉末主要成分为C、MnO和Li2CO3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号