首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对雷电波中高频分量是造成行波保护误动作重要原因的问题,通过对轻型直击雷、重型直击雷和短路故障进行暂态分析,提出辨识雷击与短路故障暂态特征的分形-时域差分判据。利用分形理论提取初始行波电流的特征维数,快速识别雷击故障,再根据波头部分的形态特征差异采用时域差分法进一步细化和辨识轻型直击雷和线路故障,并从母线端测得的电流行波线模量来实现判据,在较短的时窗内迅速准确地辨识雷击和短路故障。仿真结果验证了判据的有效性与可靠性。  相似文献   

2.
超高压线路暂态保护中雷电干扰与短路故障的识别   总被引:17,自引:2,他引:15  
未导致故障的雷击可能会造成超高压线路暂态保护的误动,对这种雷电干扰的识别是暂态保护实用化必须要解决的一个棘手问题。全面分析了输电线路中雷电干扰和故障情形的模量行波大小与行波波形,发现如下特征:感应雷作用下三相线路中的线模量远小于地模量;重型直击雷的波头部分和截波处都突变剧烈;轻型直击雷的波尾时间显著小于短路行波的持续时间。基于此,提出了轻型直击雷、感应雷与重型直击雷、普通短路故障的识别原理,以及利用小波变换的雷电干扰实用识别算法,大量EMTP仿真表明该识别原理可行、算法可靠,有望解决暂态保护在雷电干扰时的误动问题。  相似文献   

3.
李禾  马静 《中国电力》2012,45(7):24-27
提出了一种利用改进递归小波变换识别输电线路故障和雷电干扰的新方法.该方法首先通过改进递归小波变换提取本线路以及相邻线路直击雷、短路故障等暂态分量,在比较他们不同特征的基础上,提出了一种利用透射和反射系数衰减规律,以及模极大值的不同构成的雷击判据.利用此判据可以区分出本线路重型雷击和轻型雷击.ATP仿真结果表明,雷击判据不仅可以对本线路雷击是否造成线路故障做出正确判断,同时,还可以解决雷击相邻线路时本线路保护误动的问题.  相似文献   

4.
应用数学形态学方法分析识别特高压线路雷击干扰   总被引:1,自引:0,他引:1  
吕艳萍  刘亚东 《高电压技术》2010,36(12):2948-2953
雷电干扰可能会造成基于行波或暂态量的特高压输电线路保护误动作。为了解决该问题,运用数学形态学对雷击和短路时的电流暂态分量进行了能量谱分析,利用故障暂态电流的相对低频分量与相对高频分量的能量比可识别短路故障和绝大部分重型雷击,但无法区分弱雷击故障与轻型雷击。针对轻型雷击时电流行波波形随时间正负交变,其幅值不断衰减,而弱雷击故障时故障电流行波波形总体变化趋势是单调的特点,提出了用直线对雷击后的行波进行拟合,采用波形相似系数进一步区别轻型雷击与弱雷击故障的新方法,该方法判断准确、计算简单,并通过大量的EMTP仿真验证了所提方法的有效性。  相似文献   

5.
针对容易受雷电影响的配电网,提出了基于S变换的雷击故障识别方法,有效地识别轻型雷击、重型故障性雷击以及单相接地故障,减少雷击误判跳闸,提高配电网运行可靠性。提出一种基于互相关算法的雷击定位方法,对比两个信号波形的相似度,适用于雷电直击配电网的定位研究。软件仿真结果表明,以上两种方法可准确、有效地识别与定位雷击故障。  相似文献   

6.
超高速保护中雷电干扰识别的暂态法研究   总被引:13,自引:0,他引:13  
雷电干扰可能会造成基于行波或暂态量的超高速输电线路保护误动作。经对雷击和短路故障时的电流故障分量进行信号能量分布和波形的分析发现:普通短路故障与雷击引起强故障时的暂态能量主要集中在低频带;雷电干扰与雷击引起弱故障时的暂态能量主要以高频为主;相对于雷电干扰和普通短路故障,雷击引起弱故障时的行波截波特征非常明显。据此,提出了基于小波变换的雷电干扰识别的暂态方法。EMTP仿真显示该识别方法是可行的。  相似文献   

7.
雷击与短路故障的S变换特征量识别方法   总被引:1,自引:1,他引:0  
输电线路落雷后雷电冲击干扰超高速保护动作。基于行波特征区分雷电冲击与短路故障有一定局限性,提出一种利用母线电压信号特征识别雷击与短路故障的新方法。以IEEERBTS-6标准测试系统为仿真对象,对不同雷击情况以及短路故障进行了仿真,验证了该算法的正确性和有效性。检测到的母线电压进行S变换,提取S变换时频等值线和幅值包络向量,根据是否含高频分量和等值包络向量的修正一阶中心矩的正负,直观准确地实现类型识别,并对特征提取和识别算法进行研究。它利用现有电能质量监测装置检测的信号进行识别,为通过母线电压波形辨识雷电冲击与短路故障提供了新方法。  相似文献   

8.
输电线路感应雷击暂态特征分析及其识别方法   总被引:24,自引:6,他引:24  
该文对架空输电线路感应雷电冲击所产生的暂态过程进行了详细的分析,并由此引出其对基于暂态量保护所造成的影响;对输电线路感应雷击与短路故障的不同暂态特征进行了深入的分析和比较:在此基础上,给出了一个识别输电线路感应雷击暂态量的方法,该方法利用暂态量的线模和零模信息构成判据,能够有效地区分感应雷击暂态量和故障暂态量。大量的EMTP仿真计算结果表明,所提出的判据是正确、有效的,能作为附加判据用以提高基于暂态量保护的抗干扰能力。  相似文献   

9.
±800 kV特高压直流输电线路雷击暂态识别   总被引:1,自引:0,他引:1  
特高压直流输电线路受到雷击未故障时,极线上电压行波围绕直流分量上下交替变化,与轴线电压相关度趋近于1。此特征可作为识别雷击干扰的判据。雷击故障时,雷电波中有大量高频分量,绝缘闪络后,迅速衰减;接地故障时,短路电压行波由附加电源产生,高频分量少。雷击故障最终呈现接地故障特征,经小波变换后,中低频分量与接地故障相近,故雷击故障高频能量与中低频能量比值较接地故障时大。据此特征可用来识别雷击故障和接地短路故障。利用云广±800 kV直流输电模型,采用5 ms时窗,进行了大量的EMTP暂态仿真,验证了该方法的有效性。  相似文献   

10.
针对雷击输电线路产生的暂态信号对行波保护的干扰,提出了一种雷击干扰与短路故障的积分识别方法。在详细分析雷击线路未造成故障、雷击造成故障和短路故障的暂态波形特征的基础上,构建综合识别判据。利用线路扰动后较短的时间内非故障雷击的波形对称性和故障时的波形单调性,分别对时间轴上方和下方的暂态电流波形进行积分运算。其一,根据二者的相对比值大小构成识别故障与非故障性雷击的主判据;其二,利用两个积分值的差构建辅助判据,以提高故障性雷击和非故障性雷击识别的可靠性。EMTDC仿真结果验证了所提积分识别判据的有效性和正确性。  相似文献   

11.
Since local signals appear time‐locally and their waveforms are steep, conventional signal processing methods are generally inadequate to detect them. In this paper, by focusing on amplitude distribution forms of an observed signal, a simple signal processing method is proposed to detect the local signals and extract their waveform shapes simultaneously. Concretely, a characteristic waveform template which consists of representative data series of a simplified target local signal is newly introduced, and a certain event regulated with it is adopted. The local signals can be detected by evaluating whether the amplitude distribution forms of observed signals are associated with the event, and substitution of conditional events for associated events improves detection performance. In addition, the proposed method has been extended to extract waveform shapes by introducing an enhanced waveform template, and automatic detection and extraction of waveform shapes can be performed simultaneously. The proposed method is applied to simulation signal data, and its effectiveness is confirmed by detection performance and extracted waveform shapes for the local signals. © 2011 Wiley Periodicals, Inc. Electr Eng Jpn, 175(3): 37–47, 2011; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/eej.21074  相似文献   

12.
设计了一种基于SOPC技术(可编程片上系统)及Nios II嵌入式软核处理器的任意波形功率电源,其特点是电源的幅度、频率、相位可在线编程,输出波形无线网络下载,双路输出高精度、大功率的恒定电压和恒定电流。重点介绍了系统架构、任意波形发生器及功率放大器的设计。  相似文献   

13.
非侵入家用负荷识别技术可以指导家庭用户合理安排用电,提高用能效率,同时也为电力部门提供家庭用电的数据支持,有利于了解负荷用电规律及趋势,完善电力规划。由于家庭用户用电负荷的稳态特征值存在相似和无规律的问题,现有的方法多采用高级算法对所有的用电负荷组合进行训练。针对现有采用负荷稳态特征值方法进行识别所存在的不足,考虑到家用负荷稳态波形具有独特性和叠加性,提出了一种利用动态时间弯曲(DTW)算法计算与模版库波形的距离来识别家用负荷的辨识方法。首先,建立负荷稳态波形模版库;然后,在电压满足一定条件的情况下,测量家庭用户电流的稳态波形;最后,利用DTW算法计算出最小距离进行识别。  相似文献   

14.
负荷对冲击电压发生器输出能力的影响研究   总被引:2,自引:1,他引:1  
冲击电压试验中,GIS和高压电缆试品的负载电容可达3 000 pF至10 000 pF。为满足这种大负荷试品的冲击试验输出波形要求,对设计中未考虑大电容试品的常规发生器,需要通过改造提高其输出能力。以15级的3 000 kV冲击电压发生器为例,应用ATP暂态电磁仿真软件建立发生器模型,对在发生器输出端串入高压阻容元件这种改进电路方法进行仿真。定量分析了发生器负载、总电感和等效波头电阻对输出波形的影响,以及输出效率随负载的变化。大负载情况下应用这种改进措施后,发生器的负载能力可从4 000 pF提高到11 000 pF,波形过冲可控制在10%以内。对于高压引线的长度限制也给出了建议。  相似文献   

15.
在瞬变电磁法中,发射信号通过感性负载后信号会产生畸变,为了减小这种畸变效应,需要产生灵活可控的发射信号。本文提出了基于波形合成的低频发射机的思路,采用DDS技术和控制器控制技术结合的设计方案,研制的装置经测试可以输出三种类型的波形,且频率、幅度灵活可控,误差在3%以内。该方案为后期任意波形的灵活可调奠定了基础,动态模拟了目标信息,具有较强的实用价值。  相似文献   

16.
数字示波器波形三维信息的软件映射方法研究   总被引:2,自引:0,他引:2  
为了提高偶发信号的捕获性能,基于当前数字存储示波器的波形显示技术,研究了一种通过软件来实现波形三维信息映射的方法。在数字示波器上运用三维显示技术,不仅能够展现信号的时间-幅度信息,还可利用不同色度来提取波形随时间呈现出的统计信息。文章主要论述了波形三维信息的软件映射原理及其数学模型,包括信号数据的映射和波形成像的色彩映射。最后简要介绍了在波形分析测试中,三维数据的处理方式。测试结果表明:波形经过三维映射处理后具有了更高的信息可观测性,优化了测试性能。  相似文献   

17.
对电涌保护器国际标准IEC 61643-1的修订进行了解读,阐述了新标准在协调性、安全性、可靠性、合理性和可操作性等方面的改进内容.该解读将有利于电涌保护器生产企业提高产品质量及进行正确试验.  相似文献   

18.
基于DDS的可编程的波形发生器   总被引:1,自引:0,他引:1  
本文主要介绍了基于DDS的波形发生器的硬件电路和工作原理。该波形发生器是由单片机控制其外围电路产生频率、幅度均可程控的正弦波、方波,频率输出范围为0~600kHz,分3个频段:0~2kHz,步进值为1Hz;2~50kHz,步进值为50Hz;50~600kHz,步进值为100Hz。峰-峰值为50V,步进值为0.2V。误差非常小,该方案设计合理,能满足实际要求。  相似文献   

19.
基于虚拟仪器的任意波形发生器   总被引:3,自引:1,他引:2  
LabVIEW是基于图形化编程界面的虚拟仪器软件.利用虚拟仪器技术,设计了1种通过波形公式编辑来产生任意波形的虚拟仪器界面,此界面具备多种波形的显示与控制功能,并且操作简单,对于程序中涉及到的原理都有详细的介绍.利用VISA通信模块实现了波形数据的下载,因此可以作为波形发生器的数据源.控制界面也可以作为波形发生器的控制...  相似文献   

20.
在简单介绍级联式变频器的基础上,对多载波控制算法和阶梯波控制算法进行了分析.提出了一种新型优化控制算法,综合了上述两种控制算法的优点,能够实现低输出谐波含量和低开关损耗,且易于VVVF控制.通过Matlab软件对该算法进行了建模仿真,仿真结果表明该算法是可行性的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号