首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
针对电压暂降问题,利用动态电压恢复器(DVR)从超级电容器蓄电池混合储能装置汲取电能补偿负载电压。介绍基于有源式混合储能系统的动态电压恢复器的等效电路,建立了蓄电池电容器并联的数学模型和控制系统,提高整套DVR的工作特性与经济性能比。对有源式混合储能系统用于DVR进行仿真分析,结果表明对于持续时间较长的电压暂降,有源式混合储能系统能有效维持敏感负荷的电压恒定。  相似文献   

2.
混合储能系统(HESS)将能量型储能和功率型储能结合,充分利用不同储能设备的特性取长补短,可以适应微电网各种场合的需求。建立了混合储能系统的数学模型,提出了一种基于能量转换(PCS)模型的超级电容器蓄电池混合储能系统。采用蓄电池与超级电容分别经过双向DC-DC变换器接入直流母线并联,再经统一采用PQ控制算法的DC-AC功率变换器接入交流电网的接入方式,该结构可减少DC-AC变换器的数目。最后进行了仿真研究,仿真结果表明:该储能系统一方面满足超级电容在短时间大功率吞吐过程中的组串电压范围要求;另一方面可维持直流母线电压恒定,减小锂电池在充放电过程中的电流纹波,控制灵活性高,具有所需超级电容和电池电压等级较低、利用率高的优点。  相似文献   

3.
超导储能技术对智能电网电压稳定的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
风力场并网是智能电网建设非常重要的一步,针对风力场接入电网后对系统电压稳定性构成的影响,提出在并网点加装超导储能装置SMES用以改善电压稳定性,最后通过使用PSASP软件的EPRI-36节点系统作为仿真算例,验证了超导储能装置在控制风速波动对电网电压稳定影响方面的有效性,说明了超导储能技术对构建智能电网的作用.  相似文献   

4.
基于混合储能系统的动态电压恢复器   总被引:1,自引:1,他引:0  
尹婷  陈轩恕  刘飞  杜砚 《高电压技术》2009,35(1):181-185
针对电压暂降影响电能质量的问题,利用动态电压恢复器(DVR)在系统发生电压暂降时从储能装置汲取电能,通过逆变单元供给重要负荷。提出适当调节蓄电池与超级电容器的容量配比并设计两储能元件间的控制并联器,并将此混合储能系统应用于DVR装置中,有效地提高整套DVR的工作特性与经济性能比。采用DSP(TMS320LF2812)为中央处理器构建的检测系统,实时快速、精确地采集电网电压。通过将混合储能系统运用于DVR的仿真分析与实验样机研制结果证明,对于持续时间较长或次数频繁的电压暂降,混合储能系统能有效地提高DVR的整体工作性能,稳定重要负荷电压。  相似文献   

5.
超级电容-蓄电池混合储能系统同时具有能量密度高和功率密度高的特点,适用于平抑含有大量分布式能源接入的低压直流配电网的电压波动。提出了一种基于混合储能的母线电压分区控制策略,对母线电压实施5层电压控制,蓄电池用于稳定波动较小时的母线电压,超级电容平抑母线电压波动较大时的功率差额,给出了一种根据母线电压波动的极端情况配置超级电容容量的方案。经Matlab/Simulink仿真,验证了该控制策略的可行性。  相似文献   

6.
电能质量对用户的影响受到广泛的重视,本文对比了分析了几种解决经常出现的电压凹陷装置的特点,包括传统的基于蓄电池的不间断电源(UPS)、飞轮储能装置(Flywheel)、超导储能设备(SMES)、动态电压补偿装置(DVR)。并基于超导储能提出了综合电压动态补偿设备,可以略综合解决电能质量问题,并可作为限流器使用。给出了拓扑图,详细分析工作原理并进行了仿真和初步的试验。通过分析,表明系统可以通过不同的控制策略分别实现限流和补偿。  相似文献   

7.
超导储能装置接入电网后,能够改善网络潮流分布、优化系统运行、有效提高电网输电能力。首先分析了超导储能装置功率输出特性,在建立计及超导储能装置接入的电网最大输电能力计算模型基础上,综合考虑超导储能装置的投资费用及其接入电网所带来的输电能力提高对应的折现收益;然后以接入超导储能装置后系统净收益最大为目标函数,通过遗传算法求解得到超导储能装置的优化安装地点和容量,并进一步提出了基于灵敏度分析的SMES优化配置方法,以压缩搜索空间,提高模型求解效率;最后通过IEEE30节点系统仿真计算,验证了所提方法的有效性。  相似文献   

8.
高功率密度分布式光伏的接入会引起配电网瞬时功率越限、电压越限、闪变等问题,同时光伏逆变器等电力电子设备规模化无序接入配电网造成的谐波污染,常引起不同节点之间谐波叠加和特定次数的谐波谐振,使配电网的电能质量问题更加多样。为此在配电网相应节点配置复合储能装置,成为解决这类电能质量问题的有效措施。本文提出了一种利用包括蓄电池和超级电容器在内的复合储能装置治理高功率密度分布式光伏接入配电网所引起的多样性电能质量问题的方法。首先,提出了节点电压偏差和电流总谐波畸变率等多目标电能质量治理约束指标;其次,在此基础上,构建了高功率密度分布式光伏接入配电网的复合储能选址定容优化模型,并采用改进多目标粒子群算法对该模型进行求解。最后,以IEEE 33节点配电系统为例进行仿真验证,结果表明该方法在高功率密度分布式光伏接入的配电网电能质量治理问题中具有良好的效果。  相似文献   

9.
超导储能装置用于改善暂态电压稳定性的研究   总被引:40,自引:14,他引:26  
建立了超导储能装置(SMES)在暂态电压稳定性分析中的简化数学模型.SMES经双桥系统的电流源型换流电路与电力系统相连.研究了具有快速响应特性的SMES在提高电力系统暂态电压稳定性方面的作用和其无功控制策略,以及采用不等触发角控制时的控制原则.在Matlab平台上编制了暂态仿真程序,对典型3机10母线系统进行了仿真计算.仿真结果表明,超导储能装置安装在动态负荷处,采用无功-电压控制方式能够有效地提高系统的暂态电压稳定性.  相似文献   

10.
将氢气储能系统与电池储能系统相互结合,可实现长期且快速的能量吞吐并减小分布式电源渗透率提高对配电网稳定性的影响。综合考虑电-氢混和储能系统接入配电网的经济性和技术性要求,以最小化系统全生命周期成本、配电网的电压波动和净负荷波动为目标,建立了电-氢混和储能系统多目标优化配置模型。采用基于Pareto的多目标人工蜂鸟算法求解其规划方案,并与多目标粒子群算法以及多目标原子轨道搜索进行了对比。最后,基于扩展的IEEE-69节点标准测试系统进行求解。仿真结果表明:多目标人工蜂鸟算法能够获得解集质量更加优异的Pareto前沿。所得混合储能系统配置方案在兼顾经济效益的同时,改善了配电网的电压质量和负荷水平。与仅配置电池储能系统相比,电-氢混合储能系统对配电网净负荷波动与电压波动的改善分别提高了21.02%与16.66%,证明了本文所提优化配置方法的有效性和卓越性。  相似文献   

11.
建立了风电机组和超导储能(superconducting magnetic energy storage,SMES)装置的数学模型以研究SMES对并网风电场运行稳定性的改善。针对风电系统中经常出现的联络线短路故障和风电场的风速扰动,提出利用SMES安装点的电压偏差作为SMES有功控制器的控制信号的策略。并搭建了风电场接入电网后的仿真模型,对实例系统进行的仿真计算结果表明,SMES采用该控制策略,不仅可以在网络故障后有效地提高风电场的稳定性,而且能够在快速的风速扰动下平滑风电场的功率输出,降低风电场对电网的冲击。  相似文献   

12.
储能装置提高电力系统暂态稳定最优位置安装   总被引:1,自引:0,他引:1  
李勇  刘俊勇 《四川电力技术》2010,33(3):77-80,94
超导储能装置可以很好地改善电力系统暂态稳定性。研究了储能装置的数学模型,运用特征值关于负荷变化的灵敏度方法找出最佳安装地点,分析了储能装置在不同安装地点对系统暂态稳定性的影响,并给出了效果对比分析,对储能装置实际应用具有一定的指导意义。  相似文献   

13.
基于超导储能的动态电压恢复器的研究   总被引:1,自引:0,他引:1  
为了给动态电压恢复器提供工作时所需能量,采用了直—直斩波电路将超导储能装置接于动态电压恢复器中。在分析了储能部分的电路构成后采用PI调节分别控制超导线圈的充、放电过程,其充电过程采用电流控制模式,放电过程采用电压控制模式从而有效地克服了外界干扰和参数变化等不利因素,充分发挥超导储能快速充放电和高能量密度转换的特性;基于dq变换检测控制动态电压恢复器的工作,并对系统在电压暂降情况下动态电压恢复器的工作状况进行了仿真分析。仿真结果表明这种基于超导储能的动态电压恢复器可迅速有效的补偿电压暂降,维持敏感负荷的电压恒定。  相似文献   

14.
应用超导储能系统(SMES) 对提高风电场的暂态稳定性进行了研究。在深入研究超导储能系统运行原理的基础上,建立了基于电压型换流器(VSC)的超导储能系统模型,实现了有功功率和无功功率的解耦控制,并提出了有功、无功功率综合控制策略。利用PSCAD/EMTDC软件进行了仿真计算,结果说明超导储能系统不但能够在风速波动时平滑风电场的功率输出,而且能够提高风电系统的暂态稳定性。  相似文献   

15.
超导储能装置在提高电力系统暂态稳定性中的应用   总被引:8,自引:1,他引:7  
超导储能(superconducting magnetic energy storage,SMES)装置可以很好地改善电力系统暂态稳定性。文中基于PSS/E平台研究了储能装置改善电力系统暂态稳定性的作用,分析了储能装置在不同安装地点以及不同安装容量下对系统暂态稳定性的影响,并给出了效果对比分析,对储能装置实际应用具有一定的指导意义。最后,通过实际华东电网宁德-双龙通道的仿真分析,验证了储能装置在改善电力系统暂态稳定性,抑制系统振荡方面的效果。  相似文献   

16.
张刚  雷勇  李永凯  周威 《电力建设》2020,41(11):78-86
储能系统作为微电网中不可或缺的重要组成部分,对保证微电网的稳定运行和提高微电网电能质量具有重要作用。提出一种基于线性自抗扰控制(linear active disturbance rejection control,LADRC)的超导磁储能系统(superconducting magnetic storage system,SMES)储能变流器控制策略,利用LADRC能够估计并补偿系统扰动,可有效改善储能系统输出电能质量和提高系统鲁棒性。通过对LADRC和比例积分(proportional integral,PI)控制系统进行频率响应特性分析可知,一阶LADRC的反馈补偿器可以等效为一个PI控制器串联一个一阶低通滤波器,能有效抑制系统高频噪声;同时使用根轨迹法分析了LADRC控制系统的稳定性和鲁棒性。MATLAB仿真结果表明,基于LADRC的SMES储能变流器控制策略具有响应速度快、控制精度高、抗扰能力强等优点,其控制效果和鲁棒性均优于传统PI控制器。  相似文献   

17.
超导储能系统直接将电磁能存储在超导磁体中,无须中间转换环节,具有响应速度快、功率密度高、效率高等优点,在可再生能源领域具有重要的应用价值。总结了超导储能系统在可再生能源领域的研究现状,将其在可再生能源应用的研究归纳为如下几个方面:解决可再生能源的波动性及其引发的频率稳定性问题,解决暂态功率失衡引发的电网稳定性问题,解决可再生能源发电设备的故障穿越问题,以及解决与其他超导电力装置协同控制问题。详细介绍了超导储能系统在这些方面应用的基本原理和实现方法,评估了其技术成熟度和经济性,介绍了其典型应用案例,指出影响其未来发展的核心关键技术,并对其未来的发展进行了展望。  相似文献   

18.
由于风能的随机性,风电场存在输出功率和连接点电压波动的问题,为提高风电并网稳定性,提出一种基于模块化多电平变流器(modular multilevel converter,MMC)拓扑和超级电容结合的储能单元结构。利用拟合函数建立风机数学模型,分析了基于异步发电机风电系统的运行特性;利用逆系统方法将MMC变流器等效电路模型进行线性解耦,对于解耦后子系统设计了以平滑有功功率和稳定接入点电压为目标的控制器。在Matlab/Simulink中搭建了在随机风波动时的仿真模型。仿真结果表明,基于MMC和超级电容的储能单元具有快速的有功和无功补偿能力,电网吸收的有功功率维持恒定,接入点电压稳定在额定值,从而降低了风速变化对电网的冲击,提高了风电并网的稳定性。  相似文献   

19.
超导储能单元在并网型风力发电系统的应用   总被引:60,自引:15,他引:45  
风力发电系统发展的趋势是将风力发电机组直接与高压电网相连(简称并网型风力发电系统)。但风速变化造成风力涡轮机械功率变化,会使发电机输出的有功和无功产生波动,从而使电网的电能质量下降。该文提出使用超导储能SMES(super conducting magnetic energy storage system)单元使风力发电机组输出的电压和频率稳定。文中详细介绍了SEMS的调节原理及其最优控制方法,建立了SEMS模型和加入SMES后系统的线性化仿真模型,采用基因算法求最优反馈矩阵,并借助MATLAB软件包设计控制器,仿真结果表明SMES单元对并网型风力发电系统中风力发电机的输出稳定具有极大的改善作用。  相似文献   

20.
储能技术及其在电力系统稳定控制中的应用   总被引:3,自引:1,他引:3  
基于储能原理的稳定控制装置通过向电力系统提供系统不平衡有功和无功功率的补偿可以有效地提高交流输电系统的稳定性。详细分析了这类控制装置的工作原理,并建立了其数学模型。在此基础上,进行了特征值和时域仿真分析,以探讨其工作特性。作为应用实例,较详细介绍了两种基于不同储能原理的电力系统稳定控制装置,一种是基于超导磁储能原理的电力系统稳定控制装置;另一种是基于飞轮储能原理的电力系统稳定控制装置。基于超导磁储能原理的电力系统稳定控制装置由超导磁体、电力电子变换装置和相应的控制系统组成。文中研究了该装置向小扰动情况下的大型互联电力系统低频振荡提供阻尼和在大扰动情况下增强系统暂态稳定性的能力。此外,还介绍了作者研制的基于超导磁储能电力系统稳定控制装置的样机,并在实验室环境下进行了控制装置的特性试验。对于基于飞轮储能的电力系统稳定控制装置,介绍了控制装置的基本原理和系统构成,并用数字仿真的方法对其工作特性进行了分析,得到了满意的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号