首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 116 毫秒
1.
基于电网换相换流器(LCC)和模块化多电平换流器(MMC)的特高压混合级联直流(HC-UHVDC)系统受到工程和学术界的广泛关注.文中建立了整流侧采用双12脉动LCC、逆变侧采用LCC串联3个并联MMC的HC-UHVDC系统模型,分析了逆变站交流故障LCC换相失败导致直流过电流的产生机理,并提出了一种基于模糊聚类与识别的HC-UHVDC系统过电流抑制方法.该方法首先通过仿真对系统逆变侧交流故障时整流站多电气量进行模糊聚类,根据聚类结果识别的逆变站不同暂态阶段特征来提前设计分阶段的触发角指令值;当系统发生交流故障时再基于整流站本地信息及时调节整流站直流电压,从而快速抑制直流过电流.在PSCAD/EMTDC上的详细电磁暂态仿真结果表明,在逆变侧三相和单相金属性短路故障工况下,所提方法在一定程度上可以抑制逆变站LCC换相失败后的直流过电流和过电压,且可以显著改善HC-UHVDC系统的动态特性.  相似文献   

2.
《电网技术》2021,45(9):3443-3452
特高压混合级联直流输电系统在逆变侧采用了电网换相换流器(line-commutated-converter,LCC)和模块化多电平换流器(modularmultilevelconverter,MMC)串联的结构,其中LCC在逆变侧交流母线发生故障时易发生换相失败。首次换相失败通常难以抑制,为了抑制后续换相失败,文中提出了一种逆变站MMC的无功功率调控方法。该方法首先获取逆变站LCC关断角变化量,将其转化为无功补偿量补偿至多个MMC的无功外环控制,增加MMC输出的无功功率来支撑交流母线电压,达到抑制后续换相失败的目的。研究了无功功率调控方法控制参数的设计原则,在PSCAD/EMTDC中搭建了相应的仿真模型,对所提出的无功功率调控方法在三相故障和单相故障以及不同短路比及故障严重程度下的有效性进行了仿真验证,仿真结果表明无功功率调控方法不仅能够有效减小特高压混合级联直流系统发生后续换相失败的概率,而且可以改善故障过程中及故障恢复期间系统的暂态特性。  相似文献   

3.
整流侧采用电网换相型换流器(line commutated converter,LCC),逆变侧采用模块化多电平换流器(modular multilevel converter,MMC)的混合型直流输电系统,结合LCC和MMC的优点,尤其适用于特高压直流输电应用场合。为了确保正常状态和故障状态下的稳定运行,文中针对混合型直流输电系统的控制策略进行研究。文中首先针对一个LCC整流站,两个MMC逆变站构成的三端混合直流系统,介绍了数学模型和整个直流系统的基本控制策略。然后针对基本控制策略下,逆变站中串联MMC存在的电压不均问题、整流侧交流系统故障时整流侧功率中断问题和逆变侧交流系统故障时的直流过电压问题,研究了用于改善系统响应特性的附加控制策略。最后在PSCAD/EMTDC中搭建了对应的三端混合直流系统。通过比较采用附加控制策略前后混合直流系统的响应特性,验证了附加控制策略的有效性。  相似文献   

4.
混合级联型多落点直流输电系统整流侧为换相换流器(LCC),逆变侧为LCC和模块化多电平换流器(MMC)组串联的拓扑结构,可以有效抑制换相失败,具备大容量功率传输的优势。建立了单极混合级联型多落点直流输电系统,针对系统中LCC送受端交流故障引发的直流功率降低、逆变侧换相失败以及受端低端MMC子系统产生的功率反向问题进行了研究,提出了一种提升系统稳定性的协调控制策略。该策略通过改变逆变侧直流电压来维持交流系统故障后功率传输的稳定性,可防止受端MMC功率反送。PSCAD/EMTDC仿真结果验证了所提协调控制策略的有效性。  相似文献   

5.
逆变侧采用电网换相换流器(LCC)和模块化多电平换流器(MMC)串联组成的特高压混合级联多端直流输电系统,为特高压直流输电提供了一种更为经济、灵活、快捷的输电方式。基于现有直流电网的协调控制策略,文中对受端MMC阀组之间的协调控制策略进行了深入的分析研究,并考虑了5种协调控制策略。然后,在PSCAD/EMTDC中,对上述5种策略遭受不同故障的响应特性分别进行仿真,故障包括送端交流故障、直流线路故障、受端LCC交流故障、受端MMC1交流故障及MMC1紧急闭锁退出。最后,基于仿真结果,对上述5种协调控制策略的适用性进行了对比分析。仿真结果表明:策略1和策略3遭受各种故障均能有效穿越;策略2、策略4和策略5在遭受直流线路故障时均发生不同程度的功率倒转,需要采取措施抑制。  相似文献   

6.
齐方方  王海云  常鹏 《高压电器》2019,55(5):201-206
为了提高直流输电并网系统的暂态稳定运行特性,文中基于送端采用双馈风电机组(DFIG),建立LCC-二极管-MMC混合直流输电并网系统,研究该系统的并网暂态运行特性,其整流侧采用电网换相换流器(line commutated converter,LCC),逆变侧采用模块化多电平换流器(modular multilevel converter,MMC)。为解决MMC无法清除直流故障的问题,在逆变侧的直流出口处加装大功率二极管以阻断故障电流通路。在MATLAB/Simulink平台搭建LCC-二极管-MMC风电并网仿真模型,通过设置直流及并网点接地故障,仿真分析LCC及MMC的各种优越性。研究结果表明:该系统不存在逆变侧换相失败的问题且发生直流故障时系统中大功率二极管能够阻断故障电流通路,在故障期间逆变侧直流电压也无突增现象且有功功率波动极小,从而增强了系统的暂态稳定特性。  相似文献   

7.
电网换相换流器(LCC)与模块化多电平换流器(MMC)级联系统具备诸多独特优势,但其低压端模块化多电平换流器(MMC)由多个电压源换流器(VSC)换流器并联组成,当发生交流侧故障时会引起低压端直流母线过电压。为抑制MMC过电压问题,提出在直流母线侧安装直流可控避雷器。对交流侧故障时MMC过电压机理进行了理论分析,提出了直流可控避雷器拓扑结构。在深入分析直流可控避雷器不同运行方式的基础上,给出了直流可控避雷器的直流混合可控开关所需的极限电流耐受能力。为实现开关触发的快速性,提出在直流混合可控开关中采用串联晶闸管阀组方案。通过晶闸管Cauer计算模型仿真研究了极限电流下晶闸管阀组瞬态结温,验证了设计方案的合理性。基于某规划直流工程进行直流可控避雷器设计,并给出了主设备布置方案。基于PSCAD/EMTDC平台搭建了系统的仿真模型,验证了所提出的直流可控避雷器拓扑抑制系统MMC过电压的有效性。  相似文献   

8.
针对一种整流侧采用电网换相换流器(LCC),逆变侧采用LCC与多个模块化多电平换流器(MMC)串联的混合级联多端直流输电系统进行了研究。为解决目前已有的控制策略无法对逆变侧各换流站输送功率进行独立控制的问题,为逆变侧换流器设计了附加功率的协调控制策略,实现了对有功功率的独立灵活控制和MMC之间的功率互相支援,并为系统设计了故障控制策略。最后,在PSCAD/EMTDC中搭建了该直流输电系统模型并对所提出的协调控制策略进行了仿真验证。结果表明,附加功率的协调控制策略能够实现对逆变侧各换流器输送有功功率的独立控制,并且在系统发生故障后具有良好的故障恢复特性。  相似文献   

9.
该文建立了整流侧为电网换相换流器(LCC)、逆变侧为LCC和模块化多电平换流器(MMC)串联的LCC-MMC串联型混合直流输电系统的小信号模型.首先,推导LCC的交直流侧等效电路和考虑内部动态特性的MMC的交直流侧等效电路;然后,基于等效电路构建系统整流侧模型和逆变侧模型,并对直流输电线路和控制系统进行建模,通过组合各个部分模型得到全系统模型;最后,通过线性化全系统模型得到全系统小信号模型.通过对比基于PSCAD/EMTDC搭建的电磁暂态模型验证小信号模型的准确性;基于小信号模型,分析MMC定直流电压控制参数、逆变侧LCC定直流电压控制参数、锁相环(PLL)参数和交流联络线参数对系统小信号稳定性的影响.该文所提出的LCC-MMC串联型混合直流输电系统的小信号模型可用于系统的小信号稳定性分析,从而为系统设计和参数选择提供有价值的参考.  相似文献   

10.
提出一种永磁直驱式风机经混合直流系统并网的拓扑,直流系统整流侧采用模块化多电平换流器(modular multilevel converter,MMC),逆变侧采用电网换相换流器(line commutated converter,LCC)。该系统结合了MMC和LCC各自的优点,既可以为风电场无源系统提供电压支撑,又可以降低投资成本和运行损耗。MMC可以通过子模块投切瞬间改变直流侧级联子模块输出的总电压。基于此项特性,提出整流侧MMC控制直流电流的方法,将MMC的控制维度从交流侧拓展至直流侧。仿真结果表明,在逆变侧主网发生远区故障时,整流侧MMC可以抑制直流电流增长,降低换相失败发生的机会;在逆变侧发生换相失败后,可以帮助系统平稳地恢复直流功率,实现故障穿越功能。  相似文献   

11.
针对受端多落点级联型混合直流输电系统发生交直流故障时,电流分配不平衡导致的功率反送、系统稳定性降低等问题开展研究,并提出改善系统稳定性的协调控制策略.该策略在发生故障时根据线路传输功率、逆变侧电网换相型换流器(LCC)输出功率以及采用定直流电压控制的模块化多电平换流器(MMC)稳态输出功率,对MMC的有功功率指令值进行调控,避免采用定直流电压控制的MMC由逆变改为整流,防止受端交流侧功率大范围转移现象的发生.同时在故障清除后仍可缓解系统恢复过程波动较大的问题,使系统能够快速平稳地恢复至额定运行状态.基于PSCAD/EMTDC建立仿真模型,仿真结果验证了所提协调控制策略可有效减小电压和功率的波动,系统在交、直流典型故障下均能实现平稳过渡,提升了受端系统的稳定性.  相似文献   

12.
多落点混合级联直流系统存在特有的模块化多电平换流器(MMC)功率盈余问题。当受端交流系统发生短路故障时,MMC过流、过压将引起MMC阀组闭锁,进一步可能导致系统功率中断。多落点混合级联直流系统整流侧采用电网换相型换流器(LCC)、逆变侧采用LCC与多台MMC级联。针对该系统提出一种适用于受端交流系统故障的故障电流限制方法,在逆变侧MMC控制中引入虚拟阻抗降低故障电流,无需额外添加设备。对虚拟阻抗的控制引入、计算以及投入实现过程进行了详细阐述,并在PSCAD/EMTDC中搭建模型进行仿真分析。结果表明,所设计的虚拟阻抗控制器可以实现故障电流的有效抑制,并防止功率倒送,从而实现混合级联直流系统的交流故障成功穿越和功率可靠传输。  相似文献   

13.
受端混联型多端直流输电系统具有很好的工程应用前景,但受端不同换流站在交流故障时的耦合特性复杂,其控制策略应能适应各站交流故障穿越的需求。首先研究了受端混联系统逆变侧并联模块化多电平换流器(modular multilevel converter, MMC)侧交流故障时的电流不平衡、过压过流机理,以及电网换相换流器(line commutated converter, LCC)侧交流故障时的功率返送机理。然后,基于故障特性提出了一种简单的协调控制策略,即通过在MMC从站配置基于有功不平衡量的电压补偿来实现并联站间电流平衡,通过设计合适的LCC定电流整定控制来解决严重过压问题。最后基于白鹤滩—江苏多端直流输电工程实际参数的电磁暂态仿真结果,验证了对故障机理分析的正确性和所提控制策略的有效性。协调控制策略不仅能有效解决MMC功率和电流不平衡问题、减小过压过流和避免功率返送,还能改善系统恢复性能,提升系统安全稳定性。  相似文献   

14.
为实现逆变侧采用电网换相换流器(line commutated converter, LCC)和多个并联模块化多电平换流器(modular multilevel converter, MMC)阀组串联的混合级联直流输电系统的安全、可靠启动,提出了一种按照不可控充电和系统控制解锁两阶段划分的启动控制策略。首先建立该类混合结构下直流系统的数学模型。在对低压端MMC不可控充电阶段暂态特性分析的基础上,推导了MMC最大启动冲击电流和预充电时间的等效计算公式,并根据最大冲击电流和预充电时间为MMC启动过程中限流电阻的选取提供依据。其次,在系统级控制器解锁至系统稳态运行阶段,针对MMC并联组在控制器解锁时产生的不平衡启动电流问题进行了分析,提出一种基于不同换流器间控制时序配合与自适应MMC功率参考值的启动优化策略。最后,通过PSCAD/EMTDC仿真结果表明,所提启动方案可以有效实现混合级联型直流输电系统的平稳启动。  相似文献   

15.
陆书豪  贾秀芳 《电力自动化设备》2021,41(11):211-216,224
送端采用电网换相换流器(LCC)、受端采用半桥与全桥混合型模块化多电平换流器(FHMMC)的LCC-FHMMC混合直流输电系统,在受端发生阀侧单相接地故障时,具有与半桥或全桥型MMC不同的故障特性.分别从交流电源贡献、直流电源贡献以及高低端阀组差异3个角度对阀侧单相接地故障下子模块过电压机理进行了分析.随后,针对FHMMC混合直流输电系统直流侧无直流断路器的特点,提出了一种基于选相型单向晶闸管旁路支路的故障隔离策略,以及适用于LCC-FHMMC混合直流输电系统阀侧单相接地故障的保护策略.最后,基于PSCAD/EMTDC仿真平台搭建了相关模型,通过仿真验证了理论分析的正确性以及所提保护策略的有效性.  相似文献   

16.
针对受端由电网换相换流器(LCC)和电压源换流器(VSC)级联的混合直流输电系统中VSC在交流故障穿越时子模块过压的问题,文中提出在受端VSC直流侧安装耗能设备以抑制VSC子模块过压的方法,对比分析了基于直流斩波耗能电阻、泄流晶闸管和可控避雷器3种耗能设备的交流故障穿越原理及策略。基于PSCAD/EMTDC仿真平台搭建了包含工程实际控制保护主机程序的受端混联LCC-VSC特高压直流仿真模型,对比分析了3种耗能设备的交流系统故障穿越特性,结果表明在受端VSC直流侧安装耗能设备可以有效抑制子模块过压,实现交流故障可靠穿越。其中可控避雷器方案具有控制原理简单、可靠性高等优点,更适用于受端混联LCC-VSC特高压直流输电系统。  相似文献   

17.
整流侧采用LCC、逆变侧采用MMC与LCC串联的混合级联型直流输电系统可实现直流故障穿越、换相失败抑制和大容量功率传输。建立混合级联型直流输电系统模型,设计系统整体控制策略,并利用PSCAD/EMTDC仿真软件研究系统功率阶跃时的动态特性,验证控制策略的有效性。对系统的直流故障特性进行仿真分析,发现若不采取合适措施,系统发生直流故障时会出现由于并联MMC之间的电流分配不均衡而产生过电流现象以及故障清除后系统恢复过程波动大的问题,为此,提出系统故障期间及故障清除后的恢复控制策略,仿真验证了该控制策略的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号