首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 518 毫秒
1.
为了研究高压大截面电缆运行过程中受热产生的应力和形变,根据传热学和弹性力学基本理论,利用有限元方法建立高压大截面电缆热力耦合模型计算其应力及形变。根据计算结果得到电缆各层温度、应力和形变的分布特性。通过对不同负荷电流下的温度、应力和形变数据进行拟合,提出相应的快速计算公式。结果表明:导体与绝缘层交界面的接触应力最大;最大轴向形变出现在绝缘层;外护层与缓冲层的径向形变较大;温度、应力和形变可由与负荷电流相关的二次多项式进行快速计算。  相似文献   

2.
针对近年来电力系统运行的XLPE绝缘高压电缆因缓冲层发生的故障与隐患增多,就缓冲层、金属护层对电缆的作用,通过测量缓冲层等材料的相关参数,运用有限元(Ansys)软件仿真计算了高压电缆的电场分布,分析了不同优化条件下缓冲层结构的影响,提出了高压电缆缓冲层与金属护层结构设计优化建议。  相似文献   

3.
利用模拟热荷法计算地下电缆稳态温度场   总被引:17,自引:0,他引:17  
根据电场和温度场的相似性,提出了用于计算地下电缆群稳态温度场的模拟热荷法。利用热路的方法将电缆金属套损耗和铠装层损耗归算到电缆导体。利用调和平均法对电缆导体外的多层介质进行处理,最终将电缆等效为导体和外护层的2层结构。根据换热量相等的原则,将地表空气对流换热系数等效为一定厚度的土壤。在电缆线芯和空气中用模拟热荷代替原来的线芯损耗和空气对土壤温度场的影响。然后根据镜像法,按照地表空气等温、导体等温以及外护层和土壤边界温度梯度相同列出约束方程组。利用高斯法求解方程组,求得地下电缆群稳态温度场的分布。试验和有限元仿真验证了模拟热荷法在地下电缆群稳态温度场计算中的有效性。  相似文献   

4.
高压交联聚乙烯(XLPE)海底电缆结构复杂、敷设环境特殊,分析导体温度时需要考虑较多因素。笔者详细介绍了海缆分层及参数计算注意事项,参照IEC 60287标准进行计算,建立了海缆的精确热路模型,获得了海缆导体温度及各层温度的矩阵方程。采用有限元方法仿真了不同环境温度及负荷下的海缆温度场,环境温度在14~24℃之间、电流在100~500 A之间变化时,热路模型与有限元仿真获得的导体温度偏差小于0.3℃。仿真结果表明,热路模型得到的导体温度及各层温度关系的计算精度满足要求,且与外界环境温度无关,为精确计算海缆导体温度提供参考。  相似文献   

5.
基于IEC 60287和有限元法的高压海底电缆温度场分析方法   总被引:1,自引:0,他引:1  
高压交联聚乙烯(XLPE)海底电缆结构复杂、敷设环境特殊,分析导体温度时需要考虑较多因素。笔者详细介绍了海缆分层及参数计算注意事项,参照IEC 60287标准进行计算,建立了海缆的精确热路模型,获得了海缆导体温度及各层温度的矩阵方程。采用有限元方法仿真了不同环境温度及负荷下的海缆温度场,环境温度在14~24℃之间、电流在100~500 A之间变化时,热路模型与有限元仿真获得的导体温度偏差小于0.3℃。仿真结果表明,热路模型得到的导体温度及各层温度关系的计算精度满足要求,且与外界环境温度无关,为精确计算海缆导体温度提供参考。  相似文献   

6.
地下电缆群稳态温度场和载流量计算新方法   总被引:10,自引:0,他引:10  
根据地表对流和深层土壤温度不变的原则,将地下电缆群开域温度场等效为闭域温度场,应用有限元分析了给定电缆负荷电流的地下电缆群闭域温度场分布.采用热路法将电缆金属套损耗归算到电缆导体,应用调和平均法对电缆导体外的薄层进行处理,最终将电缆等效为导体和外护两层结构,减少了剖分节点数,提高了计算精度和收敛速度.采用弦截法计算了地下电缆群载流量.试验和计算结果表明,利用有限元计算地下电缆群温度场和载流量满足工程实际需求.  相似文献   

7.
高压电力电缆金属护套下的热阻特性分析   总被引:5,自引:5,他引:0  
IEC60287标准是电力电缆线路温度监测及载流量计算的理论基础与依据,为实现对IEC60287标准在线路载流量计算与电缆线路温度监测上的准确运用,通过对某国产电缆的载流量温升试验,研究了单芯高压电力电缆各层的温度分布并根据温度分布按照IEC60287的热传导模型推算出了单芯高压电力电缆各层的热阻值。利用IEC60287标准计算的单芯高压电力电缆的热阻参数与实际推算值比较表明,电缆导体与金属铝套间热阻的理论值与试验值之间存在有56.8%的差异。研究结果发现,阻水带及金属护套与电缆线芯之间存在的气隙是产生这种差异的主要原因。针对电力电缆的实际结构,在IEC60287标准基础上提出了一种改进的计算方法,该方法将电缆导体与铝套间部分分为热阻值不同的2层进行计算,并根据实际温升试验得到的热阻值提出了电缆导体与金属护套间的组合热阻系数的修正值为20.0Km/W,高于标准规定的6.0Km/W。  相似文献   

8.
电力电缆运行中导体的温度是确定电缆是否达到载流量的依据,为分析热路简化模型计算电缆导体温度的精度,根据110 kV交联聚乙烯电缆各层温度的热路模型及其简化模型,借助Matlab软件推导出了基于电缆表面温度推算电缆导体温度的计算式,理论上演算了电缆热路完整模型与简化模型之间的误差,并给出该误差与所施加电流的函数关系。同时,设计了直埋电缆的暂态温升试验,根据实测表面温度数据利用简化模型计算了导体温度、绝缘层温度,对比分析了简化模型所计算的导体温度、绝缘层温度与实测导体温度、绝缘层温度之间的误差。结果表明,简化模型计算电缆导体温度与实测导体温度之间的误差在允许范围之内,可用于工程上基于电缆表面温度推算电缆导体温度。  相似文献   

9.
高压单芯电缆接地系统破坏后的悬浮电压分析   总被引:3,自引:0,他引:3  
高压单芯电缆的接地系统一旦被破坏,在其电缆金属护层上会产生高值悬浮电压而引发严重后果.介绍了电缆金属护层悬浮电压的计算方法,并分析计算了运行中110 kV单芯电缆金属护层两端不接地时的悬浮电压值,讨论了影响悬浮电压的主要因素及其危害性,提出了解决电缆金属护层悬浮电压的相关措施.  相似文献   

10.
高压单芯电缆金属护套雷电过电压仿真和参数分析   总被引:3,自引:1,他引:2  
高压单芯电缆往往采用金属护套单端接地或金属护套交叉换位互联接地。当电缆受到过电压入侵时,金属护套上的过电压可能超过外护层的绝缘水平,击穿外护层。高压电缆单芯金属护套雷电过电压的仿真计算,与仿真所用模型、元件参数以及电缆的接线方式、运行方式等有关,而元件模型、参数的准确获得是非常困难的,电缆运行方式也是多种多样的。为此,在典型状况下护套雷电过电压仿真计算的基础上,对包括电缆结构、大地电阻率、侵入波波形、冲击接地电阻、电缆长度、负荷电阻的大小及性质等、模型及参数对护套雷电过电压的影响进行了分析研究,并研究了两个或更多的交叉互联大段串联以及有多回电缆出线时,电缆护套上的过电压。研究表明,电缆的结构、电缆长度、入波波形以及负荷电阻的大小和性质对金属护套过电压有较大的影响;当雷电入侵多个交叉互联大段串联的电缆导体时,应在各绝缘接头处加护层保护器;并联出线越多,其护套上的过电压越低。  相似文献   

11.
高压单芯电缆运行过程中会在金属护层产生感应电压及环流,如果电压及环流过大将会影响到电缆线路的安全运行,本文以110 kV陆家垄电缆线路工程为例,分析电缆金属护层的合理接地方式,同时提出了电缆施工及运行过程中电缆金属护层接地故障及防范措施.  相似文献   

12.
朱爱钧 《供用电》2006,23(6):7-9
结合上海电网电缆工程的应用实例,对超高压、长距离、大截面电缆护层感应电压进行了计算及分析,探讨了当电缆线路较长、通电电流较大时,电缆金属护套上感应电压限制值标准对电缆截面选型及电缆长度分段较长的影响,提出了提高金属护套感应电压限制值是可行的观点,以及限制值提高后相应需注意的问题。  相似文献   

13.
电缆夹具上巨大的热膨胀机械应力造成电缆本体、接头或终端损伤等问题,针对此问题,采用有限元法和热应力计算方法对高电压大截面电缆热膨胀机械应力进行研究,同时考虑电缆金属护套伸缩应变和蛇形弧幅施工误差等因素对电缆热膨胀机械应力的影响。基于SolidWorks软件建立普通电缆夹具和大截面电缆专用夹具三维实体模型,通过ABAQUS软件计算得出热膨胀机械应力计算结果。由计算结果可知,220 kV及以上高压电缆工程中,蛇形敷设节距范围为3 000~8 000 mm,蛇形弧幅宜打弯至200 mm以上;螺杆与螺孔接触部分产生的应力值最大,采用大截面电缆专用夹具可有效减少热膨胀机械应力产生的集中场强,对解决电缆受热膨胀力产生的损伤问题具有重要意义。  相似文献   

14.
气体绝缘金属封闭输电线路(GIL)的轴向热应变计算对于其可靠性设计具有重要意义。为了实现GIL轴向热应变的定量计算,建立了GIL热场、流场、力场耦合计算的有限元模型,考虑气体的对流作用,通过计算GIL导体和外壳的焦耳热损耗,将其作为激励加载到有限元模型中,计算了GIL管道轴向热应变。同时,利用由126 kV GIL管道、大电流发生器、应变解调仪、应变传感器等组成的GIL热应变测试实验平台,开展GIL管道热致伸缩特性实验。研究表明:导体和外壳温度分布均呈现分层现象,外壳温度分层现象比导体更加明显;GIL温度与轴向热应变均有近似的轴对称性,且GIL管道轴向热应变与负荷电流的平方和环境温度具有近似正相关关系;随着压强的增大,GIL导体温度逐渐降低,GIL外壳温度和轴向热应变逐渐增大,充0.5 MPa的SF6气体时比充0.1 MPa时伸缩量增加20%。通过对实验数据和仿真结果的对比分析,验证了所建立有限元模型的有效性。  相似文献   

15.
依据海南联网系统500 kV海底电缆捆绑特殊海底光缆的实际情况,通过分布式光纤传感技术结合经有限元仿真模型优化的IEC60287热路模型的方法可以监测海底电缆内部的温度分布。在实验室中搭建岸上模拟实验平台,利用中压电缆捆绑光纤的结构进行捆绑电缆岸上模拟实验。同时,将经验证的温度监测方法应用于海南联网系统500 kV海底电缆,以C相空气段为例监测捆绑电缆光单元的温度。采用有限元仿真计算电缆表面的温度,根据电缆表面的温度基于热路模型推导出对应的导体温度,得到电缆导体在实际运行过程中的温度变化。岸上模拟实验测量的导体温度与数值计算得到导体温度的误差低于1.77%, 验证了海底电缆导体温度监测方法的准确性。  相似文献   

16.
根据热路与电路的相似性,建立了电缆导体温度计算热路模型,开发了基于VB程序的电缆导体温度计算软件,该软件可实时准确计算出电缆导体温度,了解电缆运行状态,为电力电缆运行维护提供理论依据。  相似文献   

17.
高速动车组高压电缆金属护层在各车体同车顶单端连接是引起动车组升弓瞬间车体浪涌过电压的重要原因。为了掌握现有连接方式下此感应电压的特点,文中以CRH2型车为例,利用PSCAD/EMTDC软件建立包括接触网电源、高压电缆、车体及接地系统的等效模型。仿真研究升弓瞬间高压电缆金属护层感应电压传播过程,探究电缆长度、接触网电源等值参数及其电压相位对感应电压的影响。结果表明:升弓时电缆芯线电压可达60~70 kV,振荡持续时间在0.2 ms左右,振荡频率一般在60~80 kHz;金属护层感应电压幅值在不同车体之间沿电缆向前传播过程中逐渐减小;金属护层与车顶之间的电压差受电缆长度、接触网电源等值参数及其电压相位的影响较大。以上研究结果对合理设计高压电缆金属护层连接方式具有指导意义。  相似文献   

18.
长距离大容量的高压电缆采用金属护层交叉互联的方式来抵消金属护层中的感应电压,金属护层的交叉互联给在线监测和诊断带来了新的挑战和契机。为此,提出了基于护层电流分析的高压电缆故障在线监测和诊断方法,为高压电缆线路常发生的外力破坏和接地箱进水等问题提前预警。首先,建立了交叉互联电缆系统的护层电流等值电路模型;然后,对交叉互联电缆系统中3个典型的护层故障进行了仿真。通过在某电缆隧道中安装的在线监测装置收集了2015-01—2016-01实测数据,对比仿真结果误差不超过5%,验证了模型的正确性。另外,仿真结果表明故障情况下高压交叉互联电缆护层电流与正常情况下对比有很大差异,且不同故障情况之间对比护层电流也不尽相同。基于以上研究,通过仿真结果建立了不同类型和位置几种典型电缆故障的诊断阈值。因此,根据各电缆接头处所测量的护层电流之间的大小比较可以对不同类型的故障和位置进行诊断。  相似文献   

19.
为了实现高压电缆大截面导体在悬链线上连续生产,介绍了悬链式交联生产线生产高压电缆过程中,大截面导体之间的接续,指出其与传统电缆生产过程中导体接续方式的区别,并通过实际验证达到理想结果。  相似文献   

20.
高压单芯电缆在工程实践中,往往因为客观条件的限制,需采用金属护层单点接地方式。因此,需对电缆金属护层正常运行及接地短路时的护层感应电压进行分析计算,并针对云南特殊的环境要求,提出相应的处理意见和建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号