首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
电容式微加速度计的闭环检测技术研究   总被引:6,自引:0,他引:6  
吴学忠  肖定邦  李圣怡 《传感技术学报》2006,19(4):1097-1099,1156
针对分立元件电路噪声与干扰大的特点,设计了基于调制解调方法的微加速度计闭环检测系统,详细介绍了该闭环检测系统的原理框图及实现方法,讨论了该闭环检测系统的数学模型,并且利用精密转台对该微加速度计的性能进行了测试,测试结果表明,该微加速度计测量线性度为2.5%,量程为±1g,刻度因子为3V/g。  相似文献   

2.
在研究体硅电容式双轴加速度计结构部分,分析差分电容检测方法的基础上,提出了一种适合该加速度计的新型信号检测方法,此方法可有效地将两轴的混叠信号分别进行输出。通过HSPICE软件仿真验证了该方法的可行性。且依据0.5μmCMOSN阱工艺参数对总体电路进行模拟仿真,5V单电源供电,微加速度计单轴灵敏度为50mV/gn,频响为2.3kHz,量程为±50gn。  相似文献   

3.
在测量硅微电容式加速度传感器时,由于器件信号的微弱和寄生电容的干扰,提高加速度的稳定性和分辨率非常困难.针对这种情况,作者分析对比开关性和调制解调型两种常见微弱电容检测方法优缺点,并提出了一种微电容检测的改进电路,用此电路对电容式加速度传感器进行了测试.数据表明,微加速度计灵敏度为1.63 V/gn,可以检测到10-17F量级的电容值.  相似文献   

4.
本文提出了一种基于ICP刻蚀以及静电键合工艺的新型微机械加速度计结构,并通过MATLAB软件对该加速度计系统进行了仿真.这种框架结构可以有效地增大结构静态电容,以便在闭环工作时能产生更大的静电力.它的整体尺寸为2 800μm×3000μm×60 μm,结构惯性质量为0.14 mgn,静态电容为3.618pF,抗过载能力超过5000 gn.通过系统仿真,该加速度计的电压灵敏度为90 mv/gn,量程为±50 gn,系统带宽是10 kHz.  相似文献   

5.
设计了一种“叉指式”微机械加速度计和相应的闭环检测电路,介绍了此微加速度计的加工工艺,并使用Ansys软件进行了模态分析和机械分析,仿真结果跟理论计算相吻合。最后对该闭环微加速度计进行了测试,得到的测量线性度为2.5%,刻度因子为3V/g。  相似文献   

6.
为了提高MEMS微加速度计的量程和抗过载能力,设计了基于UV-LIGA技术的非硅MEMS电容式微加速度计。针对该加速度计,设计了基于相敏解调的差分电容测控电路。检测通道主要由前置级电荷积分放大电路、带通滤波电路、相敏解调器、低通滤波以及电平转换电路组成,反馈通道由低通滤波和加法电路组成。完成了微加速度计测控电路的调试和检测通道的标定实验,实验表明:检测通道的量程约为±6 pF,灵敏度为89.3 mV/pF,线性度为2.59%,满足加速度计检测通道的要求。  相似文献   

7.
介绍了一种用于差分电容检测前置电路的开关电路,该电路使信号易于解调而能简化信号处理电路。阐述了电路的工作原理及相关特性,在250 kHz的载波频率下,给出了Hsp ice仿真结果及其具体在微机械加速度计中的应用。实际结果表明:样品的灵敏度为16~25mV/gn,非线性为0.1%~0.5%,满足技术要求。  相似文献   

8.
《传感器与微系统》2019,(12):116-119
数字闭环石英挠性加速度计系统主要由石英挠性加速度计表头和数字检测电路组成,其极限精度取决于差动电容检测电路的灵敏度。针对数字闭环石英挠性加速度计前端差动电容检测的需求,给出了一种基于电容桥的差动电容检测方法。利用数字电路产生高频方波进行单载波调制,同时利用交流电容桥结构对载波信号进行处理,并设计后续的差分放大电路对载波信号进一步处理最终实现对微弱差动电容变化的检测。经过实验验证,检测电路对电容的检测最终实现最小分辨率约为1. 8 f F(对应加速度变化1μgn)。  相似文献   

9.
为了提高微加速度计的噪声性能,研究了一种基于绝缘体上硅(SOI)技术的单轴MEMS加速度计的设计和加工方案。该微加速度计采用大面积质量块的电容式检测结构,通过增加检测质量,在保证灵敏度的前提下,有效地降低了微加速度计的机械布朗噪声,增强了信噪比。另外,该微加速度计采用一种基于Al保护层的MEMS SOI工艺技术制造,有利于提高微加速度计的整体精度水平。测试结果表明:微加速度计的本底噪声为20μgn/√Hz,灵敏度为2.5 V/gn。  相似文献   

10.
徐娇 《传感技术学报》2021,34(2):162-167
设计了面向圆片级封装的一种闭环加速度计读出电路.在基于电容式微加速度计结构的读出电路设计中考虑了寄生电容对整个系统的影响.用MATLAB SIMULINK对所设计的读出电路进行了建模仿真.在仿真过程中分析了噪声、圆片级封装与普通封装的寄生参数及实际工艺中流水结构的不对称性的影响并进行了比较.结果表明,所设计传感器及读出电路的非线性误差在量程±20 gn范围内小于0.5%;圆片级封装的稳定时间在2 ms,小于普通封装的稳定时间;基于圆片级封装的对称性梳齿结构的输出电压灵敏度为328 mV/gn.  相似文献   

11.
This paper presents a symmetrical double-sided serpentine beam-mass structure design with a convenient and precise process of manufacturing MEMS accelerometers. The symmetrical double-sided serpentine beam-mass structure is fabricated from a single double-device-layer SOI wafer, which has identical buried oxides and device layers on both sides of a thick handle layer. The fabrication process produced proof mass with though wafer thickness (860 μm) to enable formation of a larger proof mass. Two layers of single crystal silicon serpentine beams with highly controllable dimension suspend the proof mass from both sides. A sandwich differential capacitive accelerometer based on symmetrical double-sided serpentine beams-mass structure is fabricated by three layer silicon/silicon wafer direct bonding. The resonance frequency of the accelerometer is measured in open loop system by a network analyzer. The quality factor and the resonant frequency are 14 and 724 Hz, respectively. The differential capacitance sensitivity of the fabricated accelerometer is 15 pF/g. The sensitivity of the device with close loop interface circuit is 2 V/g, and the nonlinearity is 0.6 % over the range of 0–1 g. The measured input referred noise floor of accelerometer with interface circuit is 2 μg/√Hz (0–250 Hz).  相似文献   

12.
硅微振梁式加速度传感器中微杠杆结构的设计   总被引:4,自引:1,他引:4  
提出了一种采用微杠杆结构进行惯性力放大的硅微振梁式加速度传感器结构,阐述了其工作机理.在此基础上,讨论了两种不同的支点形式,分别推导了这两种结构形式的放大倍数计算公式,发现Ⅰ型支点形式的放大倍数略高于Ⅱ型支点,并采用有限元方法进行了仿真;分析了支点刚度以及输出轴刚度对放大倍数的影响;提出了微杠杆结构设计的原则.  相似文献   

13.
设计了一种适合于高gn值压阻式微加速度计圆片级封装的结构,解决了芯片制造工艺过程中电极通道建立、焊盘保护、精确划片等关键技术。采用玻璃—硅—玻璃三层阳极键合的方式进行圆片级封装,较好地解决了芯片密封性、小型化和批量化等生产难题。在4 in生产线上制作的高gn值压阻式微加速度计样品,尺寸仅为1 mm×1 mm×0.8 mm;对传感器进行的校准与抗冲击性能测试,结果表明:样品具备105gn的抗冲击能力、0.15μV/gn/V的灵敏度以及200 kHz的谐振频率。  相似文献   

14.
目前研制的基于体硅工艺的微加速度计存在着启动时间较长,启动漂移量较大的问题,难以满足某些需要快速启动的应用.为了减少微加速度计的启动时间,对微加速度计的启动漂移特性进行了研究.分析了启动过程中微加速度计表芯自身发热,驱动和检测电路的发热的热传导和电路参数漂移的影响,并建立了包括电路的微加速度计有限元模型进行热仿真分析,...  相似文献   

15.
本文针对硅微机械结构振动幅度由于封装难以计算机视觉测量及电学测量中的精度受接口电路参数影响的问题,在对静电梳齿驱动、平板电容检测的硅微谐振结构进行建模分析后,提出基于单边带电压比的电学测量振动幅度的方法并分析了测量方法的原理。实验表明研制的某硅微机械谐振加速度计在受迫振动下的振动幅度为0.25um,频谱分析还表明存在上电噪声引起的振动幅度,该测试方法还能应用于硅微谐振结构的谐振频率测量,同时为高品质因数的硅微机械谐振结构的可静电自激驱动提供了依据。  相似文献   

16.
低温共烧陶瓷(LTCC)技术是实现电子设备小型化、高密度集成化的主流封装/组装集成技术,可适用于耐高温、耐受恶劣环境下的特性要求。报道了以LTCC为结构材料设计、制作的一种MEMS差分电容式加速度计。该器件的敏感质量、4根悬臂梁结构都内嵌于LTCC多层基板,质量块和上下盖板之间通过印刷电极组成差分电容对;高精度电容检测芯片表贴于LTCC基板表面,将差分电容信号转化为电压信号。论文讨论了微机械LTCC加速度计的设计与制备、检测电路和性能测试。LTCC的高密度多层布线减小了互连线的长度和相关耦合寄生电容;基于集成芯片的检测电路解决了分立式检测电路的引起噪声大、电路复杂等问题。测试结果表明:该加速度计结构灵敏度较高,小载荷情况下表现出良好的线性关系,灵敏度约为30.3 mV/gn。  相似文献   

17.
采用微型机械电子系统技术和集成电路工艺制作出了SOI技术高灵敏度的硅微固态压阻平膜芯片;通过动力学分析和有限元模拟,研制出了具有高过载保护功能的加速度传感器结构;通过玻璃粉烧结工艺将其键合在弹性梁的应力集中处,研制出量程为±2000 g、过载能力为30倍满量程的高过载梁膜结合压阻式加速度计.加速度计具有较高的测量灵敏度和精度,满量程输出为126.97 mV/2V,静态精度为0.86%FS.  相似文献   

18.
一种新结构硅微机械压阻加速度计   总被引:6,自引:3,他引:3  
设计、制造并测试了一种新结构硅微机械压阻加速度计.器件结构是悬臂梁-质量块结构的一种变形.比较硬的主悬臂梁提供了一定的机械强度,并且提供了高谐振频率.微梁很细,检测时微梁沿轴向直拉直压.力敏电阻就扩散在微梁上,质量块很小的挠动就能在微梁上产生很大的应力,输出很大的信号.5 V条件下,灵敏度为14.80 mV/g,谐振频率为994 Hz,分别是传统结构压阻加速度计的2.487倍和2.485倍.加速度计用普通的N型硅片制造,为了刻蚀高深宽比的结构,使用了深反应离子刻蚀(DRIE)工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号