首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
随着车联网(IoV)中车辆和智能应用数目的增加使计算密集型任务激增,传统架构难以满足用户需求。为解决车联网计算资源不足且分配不均匀、应用时延需求无法满足、任务能耗成本较高的问题,结合移动边缘计算(MEC)和软件定义网络(SDN),设计了一种从宏基站到MEC服务器到车辆的车联网架构中的高效任务卸载方案,并提出一种改进的低复杂度非支配排序遗传算法,优化任务卸载成本和MEC服务器的负载均衡率。实验仿真结果表明,相比于随机卸载,NO-MEC卸载,NO-I卸载,传统NSGA、NSGA-Ⅱ卸载,GA卸载,Q-learning卸载,DQN卸载方案,所提方案有着更低的卸载成本,更优的负载均衡率,得到近似最高的系统效用,能够给车联网中的车辆用户带来更优质的网络服务。  相似文献   

2.
车载边缘计算(Vehicular Edge Computing,VEC)是一种可实现车联网低时延和高可靠性的关键技术,用户将计算任务卸载到移动边缘计算(Mobile Edge Computing,MEC)服务器上,不仅可以解决车载终端计算能力不足的问题,而且可以减少能耗,降低车联网通信服务的时延。然而,高速公路场景下车辆移动性与边缘服务器静态部署的矛盾给计算卸载的可靠性带来了挑战。针对高速公路环境的特点,研究了临近车辆提供计算服务的可能性。通过联合MEC服务器和车辆的计算资源,设计并实现了一个基于深度强化学习的协同计算卸载方案,以实现在满足任务时延约束的前提下最小化所有任务时延的目标。仿真实验结果表明,相比于没有车辆协同的方案,所提方案可以有效降低时延和计算卸载失败率。  相似文献   

3.
近年来,随着移动智能设备的普及以及5G等无线通信技术的发展,边缘计算作为一种新兴的计算模式被提出,作为传统的云计算模式的扩展与补充。边缘计算的基本思想是将移动设备上产生的计算任务从卸载到云端转变为卸载到网络边缘端,从而满足实时在线游戏、增强现实等计算密集型应用对低延迟的要求。边缘计算中的计算任务卸载是一个关键的研究问题,即计算任务应在本地执行还是卸载到边缘节点或云端。不同的任务卸载方案对任务完成时延和移动设备能耗都有着较大的影响。文中首先介绍了边缘计算的基本概念,归纳了边缘计算的几种系统架构。随后,详细阐述了边缘计算中的计算任务卸载问题。基于对任务卸载方案研究的必要性与挑战的分析,对现有的相关研究工作进行了全面的综述和总结,并对未来的研究方向进行了展望。  相似文献   

4.
针对移动边缘计算(MEC)中用户任务处理时延与能耗过高的问题,提出了“云-边-端”三层MEC计算卸载结构下的资源分配与卸载决策联合优化策略。首先,考虑系统时延与能耗,将优化问题规划为系统总增益(任务处理时延与能耗相对减少的加权和)最大化问题;其次,为用户任务设置优先级,并根据任务数据量初始化卸载决策方案;然后,采用均衡传输性能的信道分配算法为卸载任务分配信道资源,对于卸载至同一边缘服务器上的任务以最大化资源收益为目标进行资源竞争,实现计算资源最优配置;最后,基于博弈论证明优化问题为关于卸载决策的势函数,即存在纳什均衡,并利用迭代增益值比较法得到了纳什均衡下的卸载决策方案。仿真结果表明,所提联合优化策略在满足用户处理时延要求的情况下最大化系统总增益,有效地提高了计算卸载的性能。  相似文献   

5.
李智  薛建彬 《计算机应用》2022,42(10):3140-3147
网联车辆节点产生的不同属性的大数据流量计算任务进行传输并卸载时,通常引起通信系统中时延抖动、计算能耗与系统开销大等问题,因此,根据实际通信环境,提出一种C-V2X车联网(IoV)中基于模拟退火算法(SAA)的任务卸载与资源分配方案。首先,根据任务处理优先程度,对处理优先程度较高的任务进行协同卸载计算处理;其次,通过全局搜索最优卸载比例因子的方式,制定了一种基于SAA的任务卸载策略,且分析并优化了任务卸载比例因子;最后,在任务卸载比例因子更新过程中,将系统开销最小化问题转化为功率和计算资源分配凸优化问题,并利用拉格朗日乘子法获取最优解。通过对所提算法与本地卸载、自适应遗传算法等作比较可知,随着计算任务的数据量不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了5.97%、49.40%、49.36%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了6.35%、92.27%、91.7%;随着计算任务CPU周期数不断增加,自适应遗传算法比本地卸载的时延、能耗、系统开销分别降低了16.4%、49.58%、49.23%,在此基础上基于SAA的方案较自适应遗传算法的时延、能耗、系统开销再降低了19.61%、94.39%、89.88%。实验结果表明,SAA不仅能降低通信系统时延、能耗及系统开销,还可以使结果加速收敛。  相似文献   

6.
针对移动智能设备(SMD)的算力、内存和能量等无法满足计算密集型需求的问题,提出一种应用任务卸载到高性能边缘服务器的计算卸载。根据任务计算、传输等情况下的能耗和时延,构建出卸载决策系统模型;根据SMD和边缘服务器的计算能力等情况,降低SMD能耗为目标,将任务卸载决策问题描述为一个非线性约束优化问题;为对约束优化问题求解提出GA-BPSO算法,算法中将静态学习因子改为动态学习因子,将最优个体引入交叉操作中,扩大算法在解空间中的探索能力。通过实验验证GA-BPSO算法能在较短时间内收敛,实现了SMD较低的能量消耗。  相似文献   

7.
针对车联网(IoV)中存在大量的车辆卸载任务计算需求,而本地端边缘服务器运算能力有限的问题,提出一种移动边缘计算分层协同资源配置机制(HRAM)。所提算法以多层式的架构合理分配与有效利用移动边缘计算(MEC)服务器的运算资源,减少不同MEC服务器之间的数据多跳转发时延,并优化卸载任务请求时延。首先构建IoV边缘计算系统模型、通信模型、决策模型和计算模型;然后利用层次分析法(AHP)进行多因素综合考虑以确定卸载任务迁移的目标服务器;最后提出动态权值的任务路由策略,调用整体网络的通信能力以缩短卸载任务的请求时延。仿真实验结果表明,HRAM算法相较于任务卸载单层式资源分配(RATAOS)算法和任务卸载多层式资源分配(RATOM)算法,分别降低了40.16%和19.01%的卸载任务请求时延;且所提算法在满足卸载任务最大可容忍时延的前提下,能够满足更多卸载任务的计算需求。  相似文献   

8.
车联网边缘计算是实现车联网系统低时延和高可靠性的关键技术,但现有方法普遍存在场景趋同和系统建模局限的问题,同时包含复杂的训练过程并面临维灾风险。通过结合云计算技术,提出一种基于多智能体强化学习的边云协同卸载方案。依据随机几何理论计算卸载节点覆盖概率,对车辆节点与卸载对象进行预配对。利用线性Q函数分解方法反映每个智能体多效用因子与任务决策间的映射关系,通过云端协同机制将智能体决策记录作为经验上传到云端,并在云端将训练更完备的神经网络反馈到边缘节点。仿真结果表明,该方案在功耗和延时方面性能优于单一固定边缘的计算策略,且算法复杂度较低,能够有效提升边云协同卸载能力,实现低时延、高可靠的任务卸载。  相似文献   

9.
随着许多计算密集型应用的出现,移动设备因其有限的计算能力无法满足用户时延、能耗等需求。移动边缘计算(MEC)通过无线信道将用户的任务计算卸载到MEC服务器,从而显著减少任务响应时延和能耗。针对多用户任务卸载问题,提出了基于稳定匹配的多用户任务卸载策略(MUTOSA),在保证用户的时延要求下达到能耗最小化。首先,在综合考虑时延与能耗的基础上,对独立任务场景下的多用户任务卸载问题进行建模;然后,基于博弈论的稳定匹配中的延迟接收思想,提出了一种调整策略;最后,通过不断迭代,解决了多用户任务卸载问题。实验结果表明,该策略相较于基准策略和启发式策略能够满足更多用户的时延要求,平均提高约10%的用户满意度,并能减少约50%的用户设备总能耗。所提策略在保证用户时延要求的同时有效地减少了能耗,可以有效地提高用户对于时延敏感型应用的体验。  相似文献   

10.
当前,多数车联网任务卸载工作仅考虑时延因素将任务卸载至边缘服务器执行(LOCAL-MEC),但是,车载单元仍有一定的计算能力可以利用.针对上述问题,研究了任务卸载的总代价即时延和能耗两个目标,提出一个将车辆自身的计算单元、附近车辆的计算单元与边缘服务器协同计算的任务卸载模型.该模型既考虑了任务的优先关系,又同时考虑了系统的时延和能耗.通过借鉴模拟退火算法思想并引入压缩因子改进粒子群算法来实现任务卸载.实验结果表明:与其他任务卸载策略相比,提出的任务卸载策略优化效果明显,TPSO算法的总代价为传统粒子群算法的53.8%、LOCAL-MEC策略的27.1%、DCOS(distributed computation offloading scheme)算法的78%,并且适用于多种现实场景.  相似文献   

11.
无人机辅助的移动边缘计算被认为是在下一代移动通信网络中能高效灵活处理时延敏感的计算密集型任务的潜力技术之一.本文研究了基于无人机的空地协同移动边缘计算的服务布置问题,具体而言,如何在满足任务时延需求和其他资源约束的情况下,通过联合优化无人机和地面基站的服务布置、无人机航迹、任务卸载和计算资源分配,以最小化所有用户的总能...  相似文献   

12.
在车载边缘计算(Vehicular Edge Computing,VEC)网络中,车辆计算资源受限导致无法处理海量的计算任务,需要将车载应用产生的计算任务卸载到VEC服务器上进行处理。但车辆的移动性和区域部署的差异性易导致VEC服务器负载不均衡,造成了计算卸载效率和资源利用率降低。为解决该问题,提出一种计算卸载和资源分配方案,以使用户效用最大化。将用户效用最大化问题转化成服务器选择决策和卸载比例与计算资源分配联合优化两个子问题,在此基础上设计基于匹配的服务器选择决策算法和基于Adam梯度优化法的计算任务卸载比例与资源分配联合优化算法,并对上述两种算法进行联合迭代,直至收敛,从而得到近似最优解以达到负载均衡。仿真结果表明,相比最近卸载方案和预测卸载方案,该方案能有效降低计算任务处理时延和车辆能耗,增大车辆效用,促进负载均衡。  相似文献   

13.
冯浩  郭彩丽 《计算机工程》2022,48(1):135-141+148
视频数据能够为车辆的智能网联化提供丰富的信息,为了更好地提取视频内容并使卸载后的视频中包含更多的有效信息,在时延约束条件下,设计一种内容驱动的计算卸载指导方式并提出基于改进蒙特卡洛树搜索的计算卸载决策算法。在车辆端通过关键帧提取来对视频内容进行预处理,以有效分析视频内容理解任务的重要性,使得更重要的任务能够获得更多的计算资源。采用基于强化学习的启发式搜索算法完成计算卸载决策,并引入深度神经网络预训练先验转移概率,从而优化算法的收敛速度并降低计算复杂度。实验结果表明,该算法能够在时延约束下有效降低能耗并提升视频内容理解精度,相比基于Q-learning、基于模拟退火的算法,其收敛速度更快,计算复杂度更低,在700 ms时延约束下系统总效用达到37%。  相似文献   

14.
在移动边缘计算(MEC)与非正交多路接入(NOMA)技术相结合的车联网系统中,针对用户处理计算密集型和时延敏感型任务时面临的高时延问题,提出了一种基于博弈论和Q学习的任务卸载、迁移与缓存优化策略。首先,对基于NOMA-MEC的车联网任务卸载时延、迁移时延与缓存时延进行建模;其次,采用合作博弈算法获得最优用户分组,以实现卸载时延优化;最后,为避免出现局部最优,通过Q学习算法优化用户分组中的迁移缓存联合时延。仿真结果表明,所提方案相比对比方案,能有效提升卸载效率并降低约22%~43%的任务时延。  相似文献   

15.
移动边缘计算(Mobile Edge Computing,MEC)中的计算卸载技术通过将终端设备的计算任务卸载到网络边缘处,以解决云计算中心时延长、能耗大和负载高等问题。介绍了MEC的概念、目前主流的MEC网络架构和部署方案。从卸载决策方面对MEC环境下计算密集型应用的卸载技术进行了详细研究,从最小化时延、最小化能耗、权衡时延和能耗及最大化收益为优化目标的4种计算卸载方案进行了分析和对比,并总结出各自的关键研究点。通过分析5G环境下MEC卸载技术的发展趋势,介绍了支持5G的IIoT-MEC网络部署架构,在此基础上分析了基于深度强化学习的轻量级任务卸载策略和基于D2D协作的MEC卸载策略。总结和归纳了目前MEC中计算卸载技术所面临的卸载决策、干扰管理、移动性管理等方面的核心挑战。  相似文献   

16.
无人驾驶汽车由于其有限的电池寿命和计算能力,难以在保证续航的前提下满足一些时延敏感任务或密集任务的处理需求。为解决该问题,在移动边缘计算(mobile edge computing,MEC)的背景下,提出了一种基于深度Q网络(deep Q-network,DQN)的无人驾驶任务卸载策略。首先,定义了一个基于任务优先级的车—边—云协同任务卸载模型,其需要通过联合优化车辆计算能力与任务卸载策略以获取系统最小延迟和能耗。由于该问题是个混合整数非线性规划问题,所以分两步对其进行求解—通过数学推导得出了最优车辆计算能力的解析解,之后在其数值固定条件下,基于DQN算法获得了任务最佳卸载策略。最后,综合SUMO、PyTorch和Python等工具建立了仿真模型,比较了DQN算法和其他三种算法在任务负载、MEC服务器计算能力以及能耗权重系数变化情况下的性能,实验结果验证了所提策略的可行性和优越性。  相似文献   

17.
为降低车联网(C-V2 X)中计算任务的时延与能耗,提出一种自适应的联合计算卸载资源分配算法.考虑多因素,多平台(本地计算、云计算、移动边缘计算(MEC)、空闲车辆计算)卸载,将计算卸载决策和资源分配建模为多约束优化问题.在粒子群算法基础上,提出粒子矩阵编码方式,联合优化车辆卸载决策、各平台任务卸载比例、MEC资源分配.提出粒子修正算法,结合罚函数法,解决多约束优化问题.仿真结果表明,与其它算法相比,该算法能在满足最大容忍时延的同时,最小化系统总成本.  相似文献   

18.
针对车联网任务卸载的资源最优化问题,以无线供能移动边缘计算(WP-MEC)系统为基础,提出一种关于计算时间分配、能耗、本地计算能力和任务卸载的联合优化方案。在该系统中,将“收集然后传输”协议应用于车辆的能量采集和消耗阶段,确保车辆可以持续工作。为求解该最优化问题,提出一种基于模拟退火算法的系统能量效率最大化算法。实验结果表明,所提策略的平均电池电量比全卸载模式、仅本地计算模式提高了40%以上,有效降低了系统时延,验证了所提策略的有效性和高效性。  相似文献   

19.
刘明  龚伟 《计算机仿真》2021,38(12):299-303
随着应用需求的增加,一些场景要求物联网能够支持密集型计算任务.传统物联网只能提供单机资源,且负载能力有限,无法有效解决时延、资源与任务的配置问题.于是提出基于联合决策模型的物联网边缘计算资源分配方法,利用边缘网络的计算优势来弥补物联网节点本地计算资源的不足,从而提高任务时延与峰值负载的性能.先从时延、能耗、计算资源和带宽资源方面进行分析,并考虑了节点移动、数据传输和卸载等情况带来的问题.根据时间和各类资源模型的分析,建立联合模型来得到资源分配调度的最佳决策,将最小卸载模型推演至最高总效用模型,并通过最速下降法对模型进行分解,在任务卸载率一定时,求解得到资源分配情况.通过动态时变物联网环境下的仿真,得到所提方法能够在较短的执行时间内,达到较高的任务完成率,且保持较低的能耗和资源分配数量.结果表明所提方法能够适应动态时变的物联网应用需求,有效完成任务与资源的卸载决策与调度分配.  相似文献   

20.
移动边缘计算通过在边缘设备上部署通信、计算、存储等资源,有效克服传统云计算存在的传输距离较长、响应时延过慢等问题,满足新兴的计算密集型和时延敏感型应用的服务需求.然而,移动边缘计算中存在边缘设备资源有限且多边缘设备间负载不均衡的问题.为了解决上述问题,多边缘设备协作成为一种必然趋势.然而,多边缘设备协作面临任务卸载与服务缓存相互耦合、边缘设备的任务负载及资源状态随时空双维变化等两大挑战,极大增加了求解难度.针对上述挑战,提出一种面向多边缘设备协作的任务卸载和服务缓存在线联合优化机制,将任务卸载和服务缓存联合优化问题解耦为服务缓存和任务卸载2个子问题.针对服务缓存子问题,提出基于情景感知组合多臂赌博机的协作服务缓存算法;针对任务卸载子问题,设计基于偏好的双边匹配算法.仿真实验表明所提算法能够有效降低任务整体执行时延,同时实现边缘设备间负载均衡.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号