首页 | 本学科首页   官方微博 | 高级检索  
检索     
共有20条相似文献,以下是第1-20项 搜索用时 265 毫秒

1.  基于纹理特征和颜色匹配的车牌定位方法  
   黄艳国  赵书玲  许伦辉《微电子学与计算机》,2011年第28卷第9期
   在分析车牌定位现有算法的基础上,根据车牌的特点,提出一种新的综合利用车牌纹理特征和边缘颜色对的车牌定位方法.首先根据车牌的纹理特征和结构特点进行粗定位,确定车牌的候选区域,然后对候选车牌区域进行边缘颜色对的检测,根据车牌背景与字符有固定颜色搭配的特点,确定车牌区域.实验结果表明,该算法能有效地对车牌进行定位,提高了车牌定位的可靠性.    

2.  基于边缘颜色信息的车牌定位算法  被引次数:2
   李莹  高满屯《计算机仿真》,2009年第26卷第8期
   车辆牌照的自动识别是智能交通系统中的一项重要技术,而车辆牌照的定位又是车牌识别的关键点之一.提出了一种基于边缘颜色点对与扫描线相结合的车牌定位方法.首先进行彩色边缘检测,然后以每一边缘点为中心,垂直于边缘方向取一条线段,在线段内检测边缘点两侧像素的颜色是否分别匹配车牌的底色与字符颜色,若是,则保留为候选车牌边缘点;通过扫描线搜索定位并分割出车牌区域.方法抓住了车牌背景与字符具有固定颜色搭配的重要特点,综合利用了车牌的结构特征和纹理特征,提高了车牌定位的可靠性.实验结果表明,算法能够实现车牌的快速精确定位.    

3.  利用综合特征的车牌定位方法  
   李文举  韦丽华  王洪东  朱正强《小型微型计算机系统》,2011年第32卷第8期
   车牌定位是车牌识别系统的关键技术之一.提出利用结构特征、纹理特征和颜色特征的车牌定位新方法.首先,利用顶帽变换抑制背景;其次,进行垂直边缘检测和形态滤波,通过结构特征进行车牌粗定位;再次,对候选区域的垂直投影应用一维小波分解滤噪,然后重构垂直投影,计算纹理统计量并构造纹理特征向量,应用BP神经网络识别车牌的字符纹理进行车牌的再定位;最后,对候选区域进行基于边缘颜色对的彩色边缘检测,根据其水平投影值进行车牌的精定位.对各种条件下拍摄的314幅含有车牌的车辆图像应用本算法,定位准确率达到98.7%.    

4.  基于边缘颜色分布的车牌定位新方法  
   黄豪杰  李榕  常鸿森  李南希《四川激光》,2007年第28卷第3期
   根据车牌的综合特征,提出了一种新的基于边缘颜色分布的车牌定位算法.该算法抓住了车牌背景与字符具有固定颜色搭配的重要特点,利用车牌区域内特有的边缘颜色分布信息并结合车牌的纹理特征,有效地滤除了大量的背景和噪声边缘,然后利用车牌的结构特征和边缘信息,并结合形态滤波的方法,以进一步确定车牌区域.实验结果表明,该算法定位准确率高、鲁棒性好,而且适用于对复杂背景下的多车牌图像进行分割.    

5.  基于彩色边缘检测及综合特征的车牌定位算法  
   苗春艳  杨耀权《电子世界》,2013年第16期
   针对车牌区域难以定位的问题,本文提出了一种基于彩色边缘检测及综合特征的车牌定位方法。该算法利用车牌底色与字符颜色有几种固定搭配的特点,对彩色图像进行边缘提取,然后利用车牌区域的结构与纹理特征定位车牌,有效减少了车牌大小、位置以及背景复杂等方面的限制。实验证明该算法耗时少,准确率高,鲁棒性好。    

6.  基于边缘颜色对特征及笔画穿越双层检测车牌定位算法  
   胡正平  曹兵兵《东北重型机械学院学报》,2012年第1期
   针对现有车牌定位算法鲁棒性不够、准确度不高以及参数设置困难等问题,提出基于边缘颜色对特征以及笔画穿越双层检测车牌定位算法,不但充分利用车牌边缘颜色搭配信息,而且有效利用了车牌字符结构信息。粗检测阶段:首先进行边缘检测,人工收集所有搭配的彩色边缘特征数据,利用机器学习模型建立车牌边缘颜色对覆盖分类学习模型,然后利用车牌边缘颜色对覆盖分类学习模型,并利用先验信息进行形态学处理形成车牌候选区域。验证阶段:针对粗检测车牌候选区域,扫描车牌边缘穿越信息,最后利用车牌区域整体边缘分布覆盖分类模型进行候选区域验证处理。该方法利用车牌背景与字符具有固定颜色搭配的重要特点,综合利用了车牌的结构特征和纹理特征,提高了车牌定位的可靠性。实验采用100幅含有不同颜色搭配的车牌图像进行实验,定位准确率达到96%以上。    

7.  基于边缘统计和颜色特征的车牌综合自动定位方法  
   李树广 吴舟舟 罗小伟《山东工业大学学报》,2005年第35卷第3期
   车牌识别在智能交通系统中起着重要作用,车牌定位是车牌识别中的关键步骤.本文提出一种基于车牌字符边缘统计和颜色特征的综合定位方法,可以有效地解决背景复杂的彩色图像中车牌定位的问题,该方法分为竖直边缘检测、边缘统计分析、车牌候选区定位、候选区筛选、车牌倾斜矫正,通过对垂直边缘的统计分析将邻近的边缘点进行连接,结合车牌的位置、颜色等特征对连接形成的块状区域进行筛选,而后对得到的车牌区域加以校正,最终输出易于分割的车牌字符图像.该系统包括从图像采集,到车牌分类、车牌文字区别等完整过程,适应性强.通过一系列实际采样图像的试验结果证明,该方法准确率高、鲁棒性好,能够满足实际车辆车牌自动识别系统应用的需要。    

8.  基于边缘统计和颜色特征的车牌综合自动定位方法  被引次数:4
   李树广  吴舟舟  罗小伟《山东大学学报(工学版)》,2005年第35卷第3期
   车牌识别在智能交通系统中起着重要作用.车牌定位是车牌识别中的关键步骤.本文提出一种基于车牌字符边缘统计和颜色特征的综合定位方法,可以有效地解决背景复杂的彩色图像中车牌定位的问题.该方法分为竖直边缘检测、边缘统计分析、车牌候选区定位、候选区筛选、车牌倾斜矫正.通过对垂直边缘的统计分析将邻近的边缘点进行连接,结合车牌的位置、颜色等特征对连接形成的块状区域进行筛选,而后对得到的车牌区域加以校正,最终输出易于分割的车牌字符图像.该系统包括从图像采集,到车牌分类、车牌文字区别等完整过程,适应性强.通过一系列实际采样图像的试验结果证明,该方法准确率高、鲁棒性好,能够满足实际车辆车牌自动识别系统应用的需要.    

9.  复杂背景图像中的车牌定位算法  被引次数:1
   刘濛  吴成东  王力  樊玉泉《中国图象图形学报》,2010年第15卷第9期
   针对复杂背景中的车牌定位问题提出了一种新的算法,将定位过程分解为确定候选车牌区域和剔除伪区域两个部分。首先在图像的二值垂直边缘图中,利用车牌区域的边缘信息及车牌的纹理特征进行车牌候选区域的确定,在降低算法复杂度的同时提高了定位精确性。然后,利用滑动的条带窗口对候选区域二值化图像进行连通块提取,结合车牌句法特征对该区域进行评判筛选,有效地解决了复杂背景及模糊图像中车牌定位精度不高的问题。此外,定位过程中的评判结果为后续的字符分割提供了重要的先验信息。实验证明该方法定位速度快,定位正确率高,对于背景纹理复杂及模糊图像的车牌定位具有很强的抗干扰性能。    

10.  基于边缘颜色点对分布特征的车牌定位算法  
   覃丕七  吴志红《计算机应用》,2010年第30卷第12期
   提出了一种基于边缘颜色点对及其分布特征的车牌定位新方法.首先利用车牌区域背景与字符具有固定颜色搭配的特征以及边缘颜色点对的距离约束条件,对汽车图像进行多次滤波,完成对车牌字符边缘颜色点对的充分突出;然后根据边缘颜色点对分布的统计特征实现车牌的快速定位.实验结果表明,该算法是一种快速、有效的定位方法.    

11.  基于车牌色彩变化特征的车牌定位方法*  被引次数:2
   陈昌涛  张玲  何伟  李刚《计算机应用研究》,2008年第25卷第12期
   针对复杂背景下的车牌定位问题,提出了一种基于车牌色彩变化特征的车牌定位方法。该定位方法将RGB彩色空间中的车牌图像转换到HSV彩色空间中进行颜色识别,分割出车牌底色及字符颜色相对应的颜色区域,同时通过边缘提取、二值化处理、与运算找到对应颜色边缘特征点,最后经纹理分析来定位车牌。    

12.  基于C#的车牌定位系统  
   杨冬梅《中国多媒体通信》,2012年第6期
   车牌识别系统是智能交通控制系统的一个重要部分,主要分为车牌定位、字符分割、字符识别三个部分。其中车牌定位的准确性直接会影响后续的两个部分。本文提出了一种将灰度边缘检测和彩色分割相结合的车牌定位系统。具体表现为对采集到的车牌图像进行预处理(灰度化、高斯滤波、边缘检测、ostu二值化),根据跳变点得到车牌候选区域,即粗定位,然后将车牌候选区域从RGB颜色空间转换到HSI颜色空间,根据各种颜色(黑、白.黄、蓝)在HSI颜色空间的区间范围进行精确定位。本文的车牌定位系统由C#实现。实验结果表明该方法具有很好的实用性。    

13.  车牌提取方法研究  
   张玉姣  史忠科《西北工业大学学报》,2003年第21卷第1期
   提出了一种基于模糊边缘检测和纹理特征的牌照提取方法。首先由投影法确定车牌候选区域,然后由12个边缘模板计算每个候选区域中边缘两侧的平均灰度差,并作出灰度梯度的二维直方图。据此确定每个候选区域模糊边缘检测中广义渡越点的值。然后根据车牌区域特点来提取牌照。经测试,该算法简单快速、定位准确,为后继字符分割和识别做了较好的预处理工作。    

14.  基于纹理和颜色的模糊车牌的增强与定位  被引次数:1
   李学斌  孙炫超《微计算机信息》,2009年第25卷第9期
   针对汽车牌照自动识别系统中图像效果差的问题,本文提出了一种基于盲解卷积的增强算法,并给出了一种纹理和颜色分析相结合的车牌定位方法.该方法利用车牌字符具有明显竖直纹理的特征,经边缘检测获取垂直边缘图,结合形态学及车牌固有特征,确定疑似牌照区域;同时在HSV颜色空间进行颜色分割,提取出满足车牌颜色特性的区域.实验结果表明,在车牌图像失真的情况下,该方法能够快速有效地实现图像恢复和车牌定位.    

15.  基于Log算子边缘检测的车牌定位方法  被引次数:1
   周泽华  胡学友  谭敏《自动化与仪器仪表》,2009年第2期
   车牌定位是车牌自动识别系统中的关键技术之一,提出一种基于Log算子边缘检测的车牌精定位方法。首先对彩色车辆图片在多颜色空间内进行色彩分割去除大量的背景干扰信息,然后利用分块的思想实现车牌的粗定位,大大缩小车牌的搜索区域,最后对粗定位图用Log算子检测边缘突出车牌的纹理特征再结合投影的方一法准确定位出车牌。通过对静态车牌图像定位仿真实验和分析表明,该方法对于车牌定位准确率较高。    

16.  基于HSV颜色空间和SVM的车牌提取算法  
   黄社阳  刘智勇  阮太元《计算机系统应用》,2014年第23卷第8期
   为了克服HSV算法在车牌提取中存在与车牌颜色相近的类似车牌区域的干扰,提出一种基于HSV颜色空间和 SVM 相结合的车牌提取算法,该方法能够较好的对多种车牌实现精确定位与提取。首先根据字符的边界特征和HSV颜色空间分别对蓝色和黄色车牌进行粗定位,获得几个车牌候选区;然后使用训练好的SVM分类器进行字符与非字符分类;最后根据车牌特征实现定位与提取。实验表明,该方法取得了良好的效果。    

17.  基于数学形态学的汽车牌照提取算法  
   周亮  刘云《青岛科技大学学报》,2007年第28卷第1期
   定位汽车牌照在车牌识别应用中是很关键的一步。提出了一种基于数学形态学的新方法。以车牌宽度和高度、车牌字符高度及字间宽距等信息为依据来设计一种新的结构元,通过对汽车边缘图像进行形态学运算,能从图片中得到包含汽车牌照的候选区域,最后,基于汽车牌照纵宽比等固有特征,采用连通域体态分析,对包含车牌的多个侯选区域进行去伪,得到真正车牌区域。通过对大量汽车图片实验,验证了该方法的有效性。    

18.  基于CNN彩色图像边缘检测的车牌定位方法  被引次数:5
   刘万军  姜庆玲  张闯《自动化学报》,2009年第35卷第12期
   针对现有车牌定位算法准确率不高、步骤多和速度慢等问题, 提出一种彩色图像车牌定位方法(License plate locating based on CNN color edge detection, LPLCCED). 首先利用细胞神经网络(Cell neural network, CNN)模型导出一种与车牌颜色特征相结合的车牌定位专用边缘检测算法, 将车牌的颜色对约束条件融合到边缘检测算法中, 本文专用边缘检测算法可以大大缩小车牌初步定位的范围. 接下来提出一种针对车牌特征的边缘滤波算法, 最后根据车牌结构和纹理特征对候选区域进行判别验证. 该流程的各个环节都可以通过硬件实现, 为面向智能交通领域的实时车牌识别系统的前期车牌定位处理提供了依据.    

19.  基于纹理特征的车牌定位方法  被引次数:7
   穆长江  苑玮琦《控制工程》,2004年第11卷第6期
   为了提高车辆牌照定位成功的概率以及定位精度,提出了一种基于纹理特征,采用自适应二值化的车牌定位方法。该方法首先利用小波分析对图像进行预处理,提取车牌图像字符区域的纵向纹理特征,然后利用边缘检测算子对图像纹理特征进行二次提取,再进行自适应二值化。该方法克服了直接对小波分析后图像进行二值化时,阈值选取非常困难的缺陷。实验结果表明,该方法能够达到提取有效车牌图像的目的,适用于各种复杂条件下拍摄的车牌图像定位。    

20.  字符边缘颜色与逻辑在车牌定位中的应用研究  
   陈昌涛  李刚  魏民  李宏  李才有《计算机工程与应用》,2009年第45卷第18期
   针对复杂背景下的车牌定位问题,提出了一种基于字符边缘颜色与逻辑的快速车牌定位方法。该定位方法将RGB彩色空间中的车牌图像,转换到HSV彩色空间中。根据像素点颜色进行二值化,得字符边缘颜色像素区,同时通过逻辑与,确定图像字符颜色边缘点,最后经纹理分析来定位车牌,解决了目前常用流行算法所不能处理的定位问题。    

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号