首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
本文研究了具有丢包、时延、编解码等通信资源受限下多输入多输出离散时间网络控制系统的最优跟踪性能. 基于频域方法, 采用二元随机过程来模拟数据包丢失, 并假设信道噪声是加性高斯白噪声(AWGN), 推导了在丢包、信道噪声、时延和编解码影响下的跟踪性能极限. 采用单参数补偿器(SDOF), 利用互质分解、Youla参数化等工具得到了编解码和时延约束下的网络控制系统最优跟踪性能的显式表达式. 结果表明, 跟踪性能与对象的固有特性(非最小相位零点与不稳定极点的位置和方向)、时延、丢包率和AWGN 功率谱密度密切相关.  相似文献   

2.
基于数据包丢失和网络带宽限制研究了网络化系统稳定性问题.通信网络的特征通过数据包丢失、带宽和加性白噪声来体现.采用频域的方法得到了网络化系统稳定所需信噪比的最小(极限)值.该最小(极限)值说明了网络化系统稳定所需信噪比是由通信网络通道的丢包率、带宽、系统的不稳定极点的位置和非最小相位零点的位置决定.研究结果进一步揭示网络化系统稳定所需信噪比的最小(极限)值与系统本质特征(非最小相位零点的位置和不稳定极点的位置)和通信网络参数(数据包丢失和带宽)的关系.仿真结果说明该理论的正确性.  相似文献   

3.
研究线性时不变、多变量、离散系统对随机信号的跟踪性能极限问题, 所考虑的随机参考输入信号为布朗运动序列. 研究结果表明此类系统的跟 踪性能极限完全由被控对象的结构特征和参考输入的统计特征决定, 其中, 结构特征指被控对象的非最小相位零点和不稳定极点的位置和方向. 作为特殊情形, 本文给出了参考输入为一致随机信号以及被控对象仅含有单个非最小相位零点和单个不稳定极点时系统跟踪性能极限问题的解. 最后, 给出了两自由度补偿器跟踪系统对随机信号的跟踪性能极限.  相似文献   

4.
本文基于白噪声和编码影响研究多通道网络化系统跟踪性能极限.网络化系统的跟踪性能指标是通过跟踪误差的能量来定义的,采用谱分解技术和范数矩阵理论得到多通道网络化系统跟踪性能极限的下界表达式.研究结果显示了对象的固有特性(非最小相位零点、零点方向、不稳定极点和极点方向)和多通道的编码器及白噪声决定网络化系统跟踪性能极限;同时也说明了多通道网络是如何影响系统跟踪性能极限.仿真结果验证了该结论的正确性.  相似文献   

5.
针对网络系统的可镇定性问题,研究整数步随机延时离散时间线性系统的均方可镇定性.利用Youla参数化与内外分解方法,结合均方小增益定理得到系统输出反馈均方可镇定的充分必要条件.该条件明确给出系统可镇定性与被控对象特性(不稳定极点、非最小相位零点、相对阶)和信道特性(频域信噪比函数)的关系,其中频域信噪比函数在被控对象不稳定极点的取值对可镇定影响甚大.利用仿真算例量化被控对象的非最小相位零点及相对阶对可镇定性的影响,验证可镇定性条件的正确性.  相似文献   

6.
一种新型自校正控制算法   总被引:1,自引:0,他引:1  
吴刚 《信息与控制》1991,20(4):52-56
本文提出一种新型自校正控制器,它兼有最小方差和极点配置控制器的优点.用本算法设计的控制系统,可得到优于用其他最优算法设计系统所获得的跟踪特性,同时又具有对噪声的最小方差控制能力.本算法适用于任何稳定、非稳定、最小相位、非最小相位被控系统.与一般最小方差和极点配置控制算法相比较,本算法具有跟踪精度高、稳态方差小、适用范围广等特点.  相似文献   

7.
极点配置模型参考自适应控制系统   总被引:1,自引:1,他引:0  
本文提出了一种直接式模型参考自适应控制系统新结构,它包含一个具有期望极点配置的参考模型和使被控对象完全跟踪参考模型的自适应律。这种系统只需利用被控对象的输入输出信息,并且允许对象是非最小相位的。  相似文献   

8.
张秀娟  徐晓萍 《控制与决策》2024,39(4):1223-1230
研究级联双端口网络控制系统在被控对象、控制器和双端口通信信道中同时存在扰动的稳定性问题.当网络控制系统通过一系列双向通信信道进行信号传输时,系统建模为通过级联双端口网络进行连接.由于通信过程中会发生信息的失真和干扰,考虑双端口信道传输矩阵中的H范数有界扰动以及被控对象和控制器中的gap型扰动,得到基于通信信道扰动服从范数有界时闭环系统与网络控制系统鲁棒稳定之间的关系,同时也以几何不等式的方式给出判定网络控制系统鲁棒稳定性的充分条件.数值算例表明结论是有效的.  相似文献   

9.
张宝升 《自动化应用》2015,(2):63-65,73
基于全波非线性信号检测器的UWB信号检测方案,研究系统的误码性能。采用高斯近似,推导通信系统误码率理论表达式,并给出了加性高斯白噪声信道(AWGN)下的仿真结果。  相似文献   

10.
研究线性时不变、单变量、离散网络化系统对周期信号的跟踪问题.与现有文献考虑的参考输入信号大都为常见的能量信号所不同的是,本文参考输入信号是离散时间周期方波功率信号.相应地,研究系统对基于功率谱的参考输入信号功率的响应,系统的跟踪性能通过输入信号与受控对象输出之差的功率来衡量,而最优跟踪性能采用跟踪误差的平均功率来度量.考虑的网络化控制系统仅上行通道存在丢包误差的影响,把丢包过程看作两个信号的合成,一是确定性信号,二是随机过程,进而丢包误差描述为源信号和白噪声之间乘积.根据被控对象和随机过程的性质,采用Parseval等式、维纳–辛钦定理和范数矩阵理论得到该系统跟踪性能极限的下界表达式.仿真结果表明,所设计的控制器能实现对周期信号的有效跟踪,进而验证了结论的正确性.  相似文献   

11.
This paper presents an optimal tracking performance of multiple‐input multiple‐output (MIMO) networked control systems (NCSs) with quantization and bandwidth constraints. In this study, we simultaneously consider the encoding‐decoding, quantization and bandwidth of communication channel. The optimal tracking performance of NCSs is obtained by spectral factorization technique and partial fraction. The obtained results demonstrate that the optimal tracking performance is influenced by the nonminimum phase zeros and unstable poles as well as their directions for a given plant. In addition, it is shown that characteristics of reference signal, encoding‐decoding, quantization, and bandwidth of communication channel are also closely related to tracking performance. Finally, the efficiency of proposed tracking performance is verified by typical examples.  相似文献   

12.
This paper investigates the issue of the optimal tracking performance for multiple-input multiple-output linear time-invariant continuous-time systems with power constrained. An H2 criterion of the error signal and the signal of the input channel are used as a measure for the tracking performance. A code scheme is introduced as a means of integrating controller and channel design to obtain the optimal tracking performance. It is shown that the optimal tracking performance index consists of two parts, one depends on the non-minimum phase zeros and zero direction of the given plant, as well as the reference input signal, while the other depends on the unstable poles and pole direction of the given plant, as well as on the bandwidth and additive white noise of a communication channel. It is also shown that when the communication does not exist, the optimal tracking performance reduces to the existing normal tracking performance of the control system. The results show how the optimal tracking performance is limited by the bandwidth and additive white noise of the communication channel. A typical example is given to illustrate the theoretical results.  相似文献   

13.
The best tracking problem for a single‐input‐single‐output (SISO) networked control system with communication constraints is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The communication constraints under consideration are finite bandwidth and networked induced‐delay. Explicit expressions of the minimal tracking error have been obtained for networked control systems with or without communication constraints. It is shown that the best tracking performance dependents on the nonminimum phase zeros, and unstable poles of the given plant, as well as the bandwidth and networked induced‐delay. It is also shown that, if the constraints of the communication channel do not exist, the best tracking performance reduces to the existing tracking performance of the control system without communication constraints. The result shows how the bandwidth and networked induced‐delay of a communication channel may fundamentally constrain a control system's tracking capability. Some typical examples are given to illustrate the theoretical results.  相似文献   

14.
The optimal tracking problem for multiple‐input multiple‐output linear‐time‐invariant discrete‐time systems with communication constraints in the feedback path is studied in this paper. The tracking performance is measured by the energy of the error signal between the output of the plant and the reference signal. The objective is to obtain an optimal tracking performance, attainable by all possible stabilizing compensators. It is shown that the optimal tracking performance consists of two parts, one depends on the nonminimum phase zeros and zero direction of the given plant, as well as the reference input signal direction, and the other depends on the nonminimum phase zeros, unstable poles, and pole direction of the given plant, as well as the bandwidth and additive white Gaussian noise of the communication channel. It is also shown that, if the constraint of the communication channel does not exist, the optimal tracking performance reduces to the existing tracking performance of the control system without communication constraints. A typical example is given to illustrate the theoretical results. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
There has recently been significant interest in performance study for networked control systems with communication constraints. But the existing work mainly assumes that the plant has an exact model. The goal of this paper is to investigate the optimal tracking performance for networked control system in the presence of plant uncertainty. The plant under consideration is assumed to be non-minimum phase and unstable, while the two-parameter controller is employed and the integral square criterion is adopted to measure the tracking error. And we formulate the uncertainty by utilising stochastic embedding. The explicit expression of the tracking performance has been obtained. The results show that the network communication noise and the model uncertainty, as well as the unstable poles and non-minimum phase zeros, can worsen the tracking performance.  相似文献   

16.
In this paper, the regulation performance limitation of networked time-delay systems is studied. The communication network is mainly affected by parameters such as packet dropouts, encoding-decoding, interference signal, and channel noises. Non-minimum phase zeros, unstable poles, and time delay are all considered for a given plant. The corresponding regulation performance expression is derived using coprime factorization and spectral decomposition techniques in the frequency domain. The results indicate that the regulation performance of the system is related to the inherent characteristics of the given plant, including non-minimum phase zeros, unstable poles, and time delay. Additionally, network communication parameters such as white Gaussian noise, packet dropouts, encoding-decoding, and external interference signals all affect the regulation performance of networked time-delay systems. Finally, some simulation examples are provided to demonstrate the effectiveness of the theory.  相似文献   

17.
In this paper, we study the optimal regulation problem of networked control systems and propose a new performance index for a given discrete time-delay system. The regulation performance of the controlled plant is investigated by considering the effects of various constraints on the communication channel such as quantization, bandwidth, and packet dropouts using frequency domain methods and two-degree-of-freedom control techniques. The results show that the regulation performance is not only related to the location and direction of the non-minimum phase zeros and unstable poles of a given system but also related to the internal time delay of the controlled plant. Packet dropouts, quantization, and bandwidth limitations can also negatively affect the optimal performance. In addition, the trade-off of the input energy constraint can also make the optimal regulation performance suffer. Finally, the reliability of this innovative result is illustrated by some simulation examples.  相似文献   

18.
This paper investigates the optimal tracking performance of systems by considering packet dropouts, additive white Gaussian noise(AWGN), and coding under energy constraints. The optimal tracking performance of communication-constrained systems is obtained by spectral decomposition and partial factorization. The results show that the optimal tracking performance of the system is related to intrinsic properties such as non-minimum phase zeros and unstable poles. What's more, encoding, data loss rate, and AWGN are also able to affect the performance of the system. Finally, the correctness of the results is verified by specific examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号