首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
In this paper, a novel approach to automatically sub-divide a complex geometry and apply an efficient mesh is presented. Following the identification and removal of thin-sheet regions from an arbitrary solid using the thick/thin decomposition approach developed by Robinson et al. [1], the technique here employs shape metrics generated using local sizing measures to identify long-slender regions within the thick body. A series of algorithms automatically partition the thick region into a non-manifold assembly of long-slender and complex sub-regions. A structured anisotropic mesh is applied to the thin-sheet and long-slender bodies, and the remaining complex bodies are filled with unstructured isotropic tetrahedra. The resulting semi-structured mesh possesses significantly fewer degrees of freedom than the equivalent unstructured mesh, demonstrating the effectiveness of the approach. The accuracy of the efficient meshes generated for a complex geometry is verified via a study that compares the results of a modal analysis with the results of an equivalent analysis on a dense tetrahedral mesh.  相似文献   

2.
The performance of unstructured mesh applications presents a number of complexities and subtleties that do not arise for dense structured meshes. From a programming point of view, the handling of unstructured meshes has an increased complexity in order to manage the necessary data structures and interactions between mesh-cells. From a performance point of view, there are added difficulties in understanding both the processing time on a single processor and the scaling characteristics when using large-scale parallel systems. In this work we present a general performance model for the calculation of deterministic SN transport on unstructured meshes that is also applicable to structured meshes. The model captures the key processing characteristics of the calculation and is parametric using both system performance data (latency, bandwidth, processing rate etc.) and application data (mesh size etc.) as input. A single formulation of the model is used to predict the performance of two quite different implementations of the same calculation. It is validated on two clusters (an HP AlphaServer and an Itanium-2 system) showing high prediction accuracy.  相似文献   

3.
High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. Adapting a mesh requires the ability to both refine and/or coarsen the mesh. The algorithms available to refine and coarsen triangular and tetrahedral meshes are very robust and efficient. However, the ability to locally and conformally refine or coarsen all quadrilateral and all hexahedral meshes presents many difficulties. Some research has been done on localized conformal refinement of quadrilateral and hexahedral meshes. However, little work has been done on localized conformal coarsening of quadrilateral and hexahedral meshes. A general method which provides both localized conformal coarsening and refinement for quadrilateral meshes is presented in this paper. This method is based on restructuring the mesh with simplex manipulations to the dual of the mesh. In addition, this method appears to be extensible to hexahedral meshes in three dimensions. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.  相似文献   

4.
In this paper, we describe an array-based hierarchical mesh refinement capability through uniform refinement of unstructured meshes for efficient solution of PDE’s using finite element methods and multigrid solvers. A multi-degree, multi-dimensional and multi-level framework is designed to generate the nested hierarchies from an initial coarse mesh that can be used for a variety of purposes such as in multigrid solvers/preconditioners, to do solution convergence and verification studies and to improve overall parallel efficiency by decreasing I/O bandwidth requirements (by loading smaller meshes and in-memory refinement). We also describe a high-order boundary reconstruction capability that can be used to project the new points after refinement using high-order approximations instead of linear projection in order to minimize and provide more control on geometrical errors introduced by curved boundaries.The capability is developed under the parallel unstructured mesh framework “Mesh Oriented dAtaBase” (MOAB Tautges et al. (2004)). We describe the underlying data structures and algorithms to generate such hierarchies in parallel and present numerical results for computational efficiency and effect on mesh quality. We also present results to demonstrate the applicability of the developed capability to study convergence properties of different point projection schemes for various mesh hierarchies and to a multigrid finite-element solver for elliptic problems.  相似文献   

5.
The Winslow equations from structured elliptic grid generation are adapted to smoothing of two-dimensional unstructured meshes using a finite difference approach. We use a local mapping from a uniform N-valent logical mesh to a local physical subdomain. Taylor Series expansions are then applied to compute the derivatives which appear in the Winslow equations. The resulting algorithm for Winslow smoothing on unstructured triangular and quadrilateral meshes gives generally superior qualilty than traditional Laplacian smoothing, while retaining the resistance to mesh folding on structured quadrilateral meshes.  相似文献   

6.
网格图形编辑的样条方法   总被引:2,自引:0,他引:2  
提出基于样条的网格图形编辑方法,首先在网格表面附近构建近似的样条曲面,同时预计算网格顶点在样条上的对应点处局部标架下的坐标表示,并作为不变量在变形中进行保持;然后编辑样条的位置和形状,利用局部标架和细节坐标重建变形后的网格,同时进行网格光滑和网格细分,改善变形效果,以实现复杂模型简单快捷的编辑/变形.方法在保细节的同时允许对网格在多个尺度下编辑.实验结果表明,融合了样条的三角网格方法较传统的样条编辑方法可避免产生过多的控制点,大大地简化了操作.  相似文献   

7.
The weighted essentially non-oscillatory (WENO) schemes are a popular class of high order numerical methods for hyperbolic partial differential equations (PDEs). While WENO schemes on structured meshes are quite mature, the development of finite volume WENO schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate cases when the mesh quality varies for complex domain geometry. In this paper, we combine two different WENO reconstruction approaches to achieve a robust unstructured finite volume WENO reconstruction on complex mesh geometries. Numerical examples including both scalar and system cases are given to demonstrate stability and accuracy of the scheme.  相似文献   

8.
质心坐标变换及其在纹理映射均匀化中的应用   总被引:2,自引:0,他引:2  
在现有质心坐标变换方法基础上,提出一种改进方法——均匀面积质心变换方法:在某一顶点邻域中,采用相应点所对应的边高比之和作为质心坐标进行分析推导,并将其应用到复杂三维形体的纹理映射均匀化中.首先通过面积权重质心坐标变换将复杂三维网格映射到平面上;在此基础上进行均匀面积质心坐标变换,就可使平面网格较均匀地分布.求解其纹理坐标可实现采用单幅图像的纹理映射均匀化.通过典型三维模型的实验和比较可以看到:采用文中方法所获得的纹理映射均匀化效果较现有的保角变换、保面积变换方法有显著改善,而且算法简单、稳定、快速.  相似文献   

9.
This work describes an automatic algorithm for unstructured mesh regeneration on arbitrarily shaped three-dimensional surfaces. The arbitrary surface may be: a triangulated mesh, a set of points, or an analytical surface (such as a collection of NURBS patches). To be generic, the algorithm works directly in Cartesian coordinates, as opposed to generating the mesh in parametric space, which might not be available in all the cases. In addition, the algorithm requires the implementation of three generic functions that abstractly represent the supporting surface. The first, given a point location, returns the desired characteristic size of a triangular element at this position. The second method, given the current edge in the boundary-contraction algorithm, locates the ideal apex point that forms a triangle with this edge. And the third method, given a point in space and a projection direction, returns the closest point on the geometrical supporting surface. This work also describes the implementation of these three methods to re-mesh an existing triangulated mesh that might present regions of high curvature. In this implementation, the only information about the surface geometry is a set of triangles. In order to test the efficiency of the proposed algorithm of surface mesh generation and implementation of the three abstract methods, results of performance and quality of generated triangular element examples are presented.  相似文献   

10.
The paper investigates the set of all selectively refined meshes that can be obtained from a progressive mesh. We call the set the transitive mesh space of a progressive mesh and present a theoretical analysis of the space. We define selective edge collapse and vertex split transformations, which we use to traverse all selectively refined meshes in the transitive mesh space. We propose a complete selective refinement scheme for a progressive mesh based on the transformations and compare the scheme with previous selective refinement schemes in both theoretical and experimental ways. In our comparison, we show that the complete scheme always generates selectively refined meshes with smaller numbers of vertices and faces than previous schemes for a given refinement criterion. The concept of dual pieces of the vertices in the vertex hierarchy plays a central role in the analysis of the transitive mesh space and the design of selective edge collapse and vertex split transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号