首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
传统高光谱遥感影像逐像素分类方法未考虑像元之间的空间关联性且泛化性能较低。形态学属性剖面是表征影像空间结构的有效方法,同时集成学习可显著提升分类算法的泛化能力。为了在高光谱影像分类中充分利用影像的空间信息并提高分类的稳定性,提出一种基于形态学属性剖面高光谱遥感影像集成学习分类方法。首先,用主成分分析和最小噪声变换进行特征提取,并借助形态学属性剖面获取影像的多重空间特征;然后用极限学习和支持向量机的方法进行分类;最后将多个分类结果以多数投票的方式集成。区别于已有集成学习方法,综合考虑了不同特征提取和不同分类方法的联合集成,并将形态学属性剖面引入其中以充分利用影像的空间信息。采用AVIRIS和ROSIS两组高光谱数据检验该方法的分类性能,实验结果表明该方法可获得高精度和高稳定性的分类结果,总体精度分别达到83.41%和95.14%。  相似文献   

2.
目的 与传统分类方法相比,基于深度学习的高光谱图像分类方法能够提取出高光谱图像更深层次的特征。针对现有深度学习的分类方法网络结构简单、特征提取不够充分的问题,提出一种堆叠像元空间变换信息的数据扩充方法,用于解决训练样本不足的问题,并提出一种基于不同尺度的双通道3维卷积神经网络的高光谱图像分类模型,来提取高光谱图像的本质空谱特征。方法 通过对高光谱图像的每一像元及其邻域像元进行旋转、行列变换等操作,丰富中心像元的潜在空间信息,达到数据集扩充的作用。将扩充之后的像素块输入到不同尺度的双通道3维卷积神经网络学习训练集的深层特征,实现更高精度的分类。结果 5次重复实验后取平均的结果表明,在随机选取了10%训练样本并通过8倍数据扩充的情况下,Indian Pines数据集实现了98.34%的总体分类精度,Pavia University数据集总体分类精度达到99.63%,同时对比了不同算法的运行时间,在保证分类精度的前提下,本文算法的运行时间短于对比算法,保证了分类模型的稳定性、高效性。结论 本文提出的基于双通道卷积神经网络的高光谱图像分类模型,既解决了训练样本不足的问题,又综合了高光谱图像的光谱特征和空间特征,提高了高光谱图像的分类精度。  相似文献   

3.
目的 为了解决基于卷积神经网络的算法对高光谱图像小样本分类精度较低、模型结构复杂和计算量大的问题,提出了一种变维卷积神经网络。方法 变维卷积神经网络对高光谱分类过程可根据内部特征图维度的变化分为空—谱信息融合、降维、混合特征提取与空—谱联合分类的过程。这种变维结构通过改变特征映射的维度,简化了网络结构并减少了计算量,并通过对空—谱信息的充分提取提高了卷积神经网络对小样本高光谱图像分类的精度。结果 实验分为变维卷积神经网络的性能分析实验与分类性能对比实验,所用的数据集为Indian Pines和Pavia University Scene数据集。通过实验可知,变维卷积神经网络对高光谱小样本可取得较高的分类精度,在Indian Pines和Pavia University Scene数据集上的总体分类精度分别为87.87%和98.18%,与其他分类算法对比有较明显的性能优势。结论 实验结果表明,合理的参数优化可有效提高变维卷积神经网络的分类精度,这种变维模型可较大程度提高对高光谱图像中小样本数据的分类性能,并可进一步推广到其他与高光谱图像相关的深度学习分类模型中。  相似文献   

4.
针对当前高光谱遥感影像分类人工标注样本费时费力,大量未标注样本未得到有效利用以及主要利用光谱信息而忽视空间信息等问题,提出了一种空-谱信息与主动深度学习相结合的高光谱影像分类方法。首先利用主成分分析对原始影像进行降维,在此基础上提取像素的一正方形小邻域作为该像素的空间信息并结合其原始光谱信息得到空谱特征。然后,通过稀疏自编码器得到原始数据的稀疏特征表达,并通过逐层无监督学习稀疏自编码器构建深度神经网络,输出原始数据的深度特征,将其连接到softmax分类器,利用少量标记样本以监督学习的方式完成模型的精调。最后,利用主动学习算法选择最不确定性样本对其进行标注,并加入至训练样本以提高分类器的分类效果。分别对PaviaU影像和PaviaC影像进行分类实验的结果表明,该方法在少量标记样本情况下,相对于传统方法能有效地提高分类精度。  相似文献   

5.
在高光谱图像分类领域中每个像素的局部邻域一旦包含来自不同类别的样本,联合稀疏表示将受邻域内字典原子与测试样本之间同谱异类的影响,严重降低分类性能.根据高光谱图像的特点,文中提出融合分层深度网络的联合稀疏表示算法.在光谱和空间特征学习之间交替提取判别性光谱信息和空间信息,构建兼具空谱特征的学习字典,用于联合稀疏表示.在分类过程中将学习字典与测试样本间的相关系数与分类误差融合并决策.在两个高光谱遥感数据集上的实验验证文中算法的有效性.  相似文献   

6.
目的 高光谱遥感影像数据包含丰富的空间和光谱信息,但由于信号的高维特性、信息冗余、多种不确定性和地表覆盖的同物异谱及同谱异物现象,导致高光谱数据结构呈高度非线性。3D-CNN(3D convolutional neural network)能够利用高光谱遥感影像数据立方体的特性,实现光谱和空间信息融合,提取影像分类中重要的有判别力的特征。为此,提出了基于双卷积池化结构的3D-CNN高光谱遥感影像分类方法。方法 双卷积池化结构包括两个卷积层、两个BN(batch normalization)层和一个池化层,既考虑到高光谱遥感影像标签数据缺乏的问题,也考虑到高光谱影像高维特性和模型深度之间的平衡问题,模型充分利用空谱联合提供的语义信息,有利于提取小样本和高维特性的高光谱影像特征。基于双卷积池化结构的3D-CNN网络将没有经过特征处理的3D遥感影像作为输入数据,产生的深度学习分类器模型以端到端的方式训练,不需要做复杂的预处理,此外模型使用了BN和Dropout等正则化策略以避免过拟合现象。结果 实验对比了SVM(support vector machine)、SAE(stack autoencoder)以及目前主流的CNN方法,该模型在Indian Pines和Pavia University数据集上最高分别取得了99.65%和99.82%的总体分类精度,有效提高了高光谱遥感影像地物分类精度。结论 讨论了双卷积池化结构的数目、正则化策略、高光谱首层卷积的光谱采样步长、卷积核大小、相邻像素块大小和学习率等6个因素对实验结果的影响,本文提出的双卷积池化结构可以根据数据集特点进行组合复用,与其他深度学习模型相比,需要更少的参数,计算效率更高。  相似文献   

7.
针对高光谱图像(hyperspectral image)样本人工标记困难导致的样本数量不足的问题, 本文提出了一个结合注意力和空间邻域的少样本孪生网络算法. 它首先对高光谱图像进行PCA预处理, 实现数据降维; 其次, 对模型训练样本采用间隔采样和边缘采样的方式进行选取, 以有效减少冗余信息; 之后, Siamese network以大小不同的patch形式进行两两结合, 构建出样本对作为训练集进行训练, 不仅实现了数据增强的效果, 还能在提取光谱信息特征的同时, 充分提取目标像素光谱信息以及其周围邻域空间信息; 最后, 添加光谱维度的注意力模块以及空间维度的相似度度量模块, 分别对光谱信息和空间邻域信息进行权重分布, 以达到提升分类性能的目的. 实验结果表明, 本文提出的方法在部分公开数据集上对比常用方法取得了较好的实验效果.  相似文献   

8.
高光谱图像分类是遥感领域研究的热点问题,其关键在于利用高光谱图谱合一的 优势,同时融合高光谱图像中各个像元位置的光谱信息和空间信息,提高光谱图像分类精度。 针对高光谱图像特征维数高和冗余信息多等问题,采用多视图子空间学习方法进行特征降维, 提出了图正则化的多视图边界判别投影算法。将每个像元处的光谱特征看作一个视图,该像元 处的空间特征看作另一个视图,通过同时优化每个视图上的投影方向来寻找最优判别公共子空 间。公开测试数据集上的分类实验表明,多视图学习在高光谱图像空谱融合分类方面具有显著 的优越性,在多视图降维算法中,该算法具有最高的分类准确性。  相似文献   

9.
The utilization of hyperspectral remote sensing image is mainly based on the spectral information,and the spatial information is always be ignored.To solve this problem,a novel hyperspectral multiple features optimization approach based on improved firefly algorithm is presented.Firstly,four spatial features,the local statistical features,gray level co-occurrence matrix features,Gabor filtering features and morphological features of hyperspectral remote sensing image are extracted,and some spectral bands are selected and then combined with these spatial features,and the feature set is constructed.Then,the firefly algorithm is used to optimize the extracted features.In view of the slow convergence speed of firefly algorithm,we use the random inertia weight from particle swarm optimization algorithm to modifiy the location update formula of firefly algorithm,and JM(Jeffreys-Matusita)distance and Fisher Ratio are used as the objective function.Two urban hyperspectral datasets are used for performance evaluation,and the classification results derived from spectral information and spectral-spatial information are compared.The experiments show that random inertia weight can improve the speed of FA-based feature selection algorithm,the performance with multiple features is better than that of spectral information for urban land cover classification,The statistical results of the two sets of experimental data indicate that the selected number of morphological features are the most in the four spatial features.The local statistical features and morphological features are more helpful to the classification of hyperspectral remote sensing images than GLCM and Gabor features.  相似文献   

10.
在对高光谱图像监督分类中, 传统的监督学习方法对高光谱数据进行分类时需要获取足够的有标记样本作为训练样本, 这样可以有效的避免Hughes效应. 实际情况下的高光谱数据拥有较多的波段和相对较小的训练样本集给传统的遥感图像分类方法带来了挑战. 因此, 提出了一种基于特征组合以及特征加权的高光谱图像分类算法, 针对纹理特征分析难度较大的现实, 利用一阶直方图的统计特征描述图像纹理特征, 通过类内散度矩阵的逆矩阵作为特征加权矩阵构造组合核函数将高光谱光谱特征和空间特征融合起来, 同时利用特征加权的方法用于提高小训练样本的监督分类精度. 实验结果表明, 本文所提的方法对小样本的高光谱数据分类具有良好的效果.  相似文献   

11.
高光谱图像具有高维度、带间相关性较高、样本数量较少等诸多问题,直接利用表示学习算法对高光谱图像进行分类会导致严重的维数灾难.对于高光谱图像,不是所有的光谱带都可用于特定的分类任务.因此,文中提出基于增强空谱特征网络的空间感知协同表示算法.依据高光谱图像内在的低维流形构建基于空谱特征的分层网络.利用训练的网络对高维数据进行特征提取,并利用空间感知协同表示算法进行分类.在两个高光谱数据集Indian Pines和Pavia University上的实验表明文中算法的有效性.  相似文献   

12.
高光谱图像监督分类中,为了避免休斯效应需要大量的训练样本,但在实际应用中对样本进行标注成本非常高,因此,得到高质量的训练样本显得十分重要。提出一种基于主动学习的高光谱图像分类方法,通过对区域关注度的统计,有效地结合图像光谱和空间特性,基于主动学习方法获取信息量较大的训练样本,从而较大幅度提高了分类的精确度。实验结果表明,所提算法比传统的随机取样监督分类法和主动学习方法在分类精确度上有较大的优势。  相似文献   

13.
集成特征选择的广义粗集方法与多分类器融合   总被引:2,自引:0,他引:2  
为改善多分类器系统的分类性能, 提出了基于广义粗集的集成特征选择方法. 为在集成特征选择的同时获取各特征空间中的多类模式可分性信息, 研究并提出了关于多决策表的相对优势决策约简, 给出了关于集成特征选择的集成属性约简 (Ensemble attribute reduction,EAR) 方法, 结合基于知识发现的 KD-DWV 算法进行了高光谱遥感图像植被分类比较实验. 结果表明, EAR 方法与合适的多分类器融合算法结合可有效提高多分类器融合的推广性.  相似文献   

14.
针对高光谱图像存在维数“灾难”、特征以及空间信息利用不足的问题,结合深度学习、流形学习及多尺度空间特征的最新进展,提出了一种TSNE和多尺度稀疏自编码网络的高光谱图像分类算法。利用TSNE算法对高光谱图像进行降维,再对每个像元的邻域进行多尺度空间特征提取,利用加入空谱联合信息的像元训练稀疏自编码网络模型并通过softmax分类器进行分类,减少计算复杂度,提高分类精确度。通过对Indian Pines及Pavia University两组数据进行实验,结果表明,提出的算法与其他五种算法相比分类效果更好。  相似文献   

15.
为解决有限训练样本下的高光谱遥感图像分类特征提取不充分的问题, 该论文提出了多尺度3D胶囊网络方法来助力高光谱图像分类. 相比传统的卷积神经网络, 所提出的网络具有等变性且输入输出形式都是向量形式的神经元而非卷积神经网络中的标量值, 有助于获取物体之间的空间关系及特征之间的相关性, 且在有限训练样本下能避免过拟合等问题. 该网络通过3种不同尺度的卷积核操作对输入图像进行特征提取来获取不同尺度的特征. 然后3个分支分别接不同的3D胶囊网络来获取空谱特征之间的关联. 最后将3个分支得到的结果融合在一起, 采用局部连接并通过间隔损失函数得到分类结果. 实验结果表明, 该方法在开源的高光谱遥感数据集上具有很好的泛化性能, 且相比其他先进的高光谱遥感图像分类方法具有较高的分类精度.  相似文献   

16.
为了充分利用高光谱图像的光谱信息和空间结构信息,提出了一种新的基于随机森林的高光谱遥感图像分类方法,首先,利用主成分分析降低数据的维数,并对主成分进行独立成分分析提取其光谱特征,同时消除像元的空间相关性,再采用形态学分析提取像元的空间结构特征,然后,根据像元的谱域和空域特征分别构造随机森林,并引入空间连续性对像元点的预测结果进行约束修正,最后由投票机制决定最后的分类结果。在AVIRIS和ROSIS高光谱图像上的实验结果表明,所提方法的分类性能要优于传统的高光谱图像分类方法,且分类精度高于基于单一特征的方法。  相似文献   

17.
Accurate hyperspectral image classification requires not only image features but also semantic concept. Similarity and relevance relation are both key factors in building image features and semantic measurement. To perform hyperspectral image classification from the viewpoint of semantic, this study focuses on creating a semantic annotation-based image classification method with relevance and similarity measurement. First, the computational model of relevance vector machine is utilized to perform cluster computation for hyperspectral image data. Then multi-distance learning algorithm is optimized as holding capability for multiple dimensions data. The proposed multi-distance learning algorithm with multiple dimensions is used to measure the similarity, according to the result of cluster computation through relevance vector machine. Finally, semantic annotation is introduced to complete classification of hyperspectral image with semantic concept. Validation with the ground truth data illustrates that the proposed method can provide more accurate and integrated classification result compared with the other methodologies. Therefore, the integration of similarity and relevance measurement is able to improve the performance of hyperspectral image classification.  相似文献   

18.
目的 高光谱图像分类是遥感领域的基础问题,高光谱图像同时包含丰富的光谱信息和空间信息,传统模型难以充分利用两种信息之间的关联性,而以卷积神经网络为主的有监督深度学习模型需要大量标注数据,但标注数据难度大且成本高。针对现有模型的不足,本文提出了一种无监督范式下的高光谱图像空谱融合方法,建立了3D卷积自编码器(3D convolutional auto-encoder,3D-CAE)高光谱图像分类模型。方法 3D卷积自编码器由编码器、解码器和分类器构成。将高光谱数据预处理后,输入到编码器中进行无监督特征提取,得到一组特征图。编码器的网络结构为3个卷积块构成的3D卷积神经网络,卷积块中加入批归一化技术防止过拟合。解码器为逆向的编码器,将提取到的特征图重构为原始数据,用均方误差函数作为损失函数判断重构误差并使用Adam算法进行参数优化。分类器由3层全连接层组成,用于判别编码器提取到的特征。以3D-CNN (three dimensional convolutional neural network)为自编码器的主干网络可以充分利用高光谱图像的空间信息和光谱信息,做到空谱融合。以端到端的方式对模型进行训练可以省去复杂的特征工程和数据预处理,模型的鲁棒性和稳定性更强。结果 在Indian Pines、Salinas、Pavia University和Botswana等4个数据集上与7种传统单特征方法及深度学习方法进行了比较,本文方法均取得最优结果,总体分类精度分别为0.948 7、0.986 6、0.986 2和0.964 9。对比实验结果表明了空谱融合和无监督学习对于高光谱遥感图像分类的有效性。结论 本文模型充分利用了高光谱图像的光谱特征和空间特征,可以做到无监督特征提取,无需大量标注数据的同时分类精度高,是一种有效的高光谱图像分类方法。  相似文献   

19.
New hyperspectral sensors can collect a large number of spectral bands, which provide a capability to distinguish various objects and materials on the earth. However, the accurate classification of these images is still a big challenge. Previous studies demonstrate the effectiveness of combination of spectral data and spatial information for better classification of hyperspectral images. In this article, this approach is followed to propose a novel three-step spectral–spatial method for classification of hyperspectral images. In the first step, Gabor filters are applied for texture feature extraction. In the second step, spectral and texture features are separately classified by a probabilistic Support Vector Machine (SVM) pixel-wise classifier to estimate per-pixel probability. Therefore, two probabilities are obtained for each pixel of the image. In the third step, the total probability is calculated by a linear combination of the previous probabilities on which a control parameter determines the efficacy of each one. As a result, one pixel is assigned to one class which has the highest total probability. This method is performed in multivariate analysis framework (MAF) on which one pixel is represented by a d-dimensional vector, d is the number of spectral or texture features, and in functional data analysis (FDA) on which one pixel is considered as a continuous function. The proposed method is evaluated with different training samples on two hyperspectral data. The combination parameter is experimentally obtained for each hyperspectral data set as well as for each training samples. This parameter adjusts the efficacy of the spectral versus texture information in various areas such as forest, agricultural or urban area to get the best classification accuracy. Experimental results show high performance of the proposed method for hyperspectral image classification. In addition, these results confirm that the proposed method achieves better results in FDA than in MAF. Comparison with some state-of-the-art spectral–spatial classification methods demonstrates that the proposed method can significantly improve classification accuracies.  相似文献   

20.
针对高光谱遥感图像维数高、样本少导致分类精度低的问题,提出一种基于DS聚类的高光谱图像集成分类算法(DSCEA)。首先,根据高光谱数据特点,从整体波段中随机选择一定数量的波段,构成不同的训练样本;其次,分析图像的空谱信息,构造无向加权图,利用优势集(DS)聚类方法得到最大特征差异的波段子集;最后,根据不同样本,利用支持向量机训练具有差异的单个分类器,采用多数表决法集成最终分类器,实现对高光谱遥感图像的分类。在Indian Pines数据集上DSCEA算法的分类精度最高可达到84.61%,在Pavia University数据集上最高可达到91.89%,实验结果表明DSCEA算法可以有效的解决高光谱分类问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号