首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
对于机器学习在P2P网络流识别中需要大量标记训练数据的问题,提出一种基于改进图半监督支持向量机的P2P流识别方法。采用自动调节的高斯核函数计算少量标识数据和大量未标识训练样本之间的相似距离以构建图模型,并在标记传播过程中嵌入训练样本局部分布信息以获取未标记样本的标识;在此基础上使用所有已标记样本对SVM训练实现P2P网络流识别。实验结果表明该方法能够兼顾整个训练样本集的信息,在提高SVM识别精度的同时,极大降低了人工标记训练样本的成本。  相似文献   

2.
基于Tri-training的半监督SVM   总被引:1,自引:1,他引:0       下载免费PDF全文
当前机器学习面临的主要问题之一是如何有效地处理海量数据,而标记训练数据是十分有限且不易获得的。提出了一种新的半监督SVM算法,该算法在对SVM训练中,只要求少量的标记数据,并能利用大量的未标记数据对分类器反复的修正。在实验中发现,Tri-training的应用确实能够提高SVM算法的分类精度,并且通过增大分类器间的差异性能够获得更好的分类效果,所以Tri-training对分类器的要求十分宽松,通过SVM的不同核函数来体现分类器之间的差异性,进一步改善了协同训练的性能。理论分析与实验表明,该算法具有较好的学习效果。  相似文献   

3.
为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向量进行标记.为解决以往主动学习算法在选择最富有信息量的样本标记后,不再进一步利用未标记样本的问题,将Tri-training半监督学习方法引入SVM主动学习过程,选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本集中有利于学习器的信息.在UCI数据集上的实验表明,文中算法在标记样本较少时获得分类准确率较高和泛化性能较好的SVM分类器,降低SVM训练学习的样本标记代价.  相似文献   

4.
构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri- training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。  相似文献   

5.
基于Kmeans与SVM结合的遥感图像全自动分类方法*   总被引:1,自引:0,他引:1  
遥感图像分类方法通常采用监督的学习算法,它需要人工选取训练样本,比较繁琐,而且有时很难得到;而非监督学习算法的分类精度通常很难令人满意.针对这些缺陷,提出一种基于K-means与支持向量机(SVM)结合的遥感图像全自动分类方法.首先使用K-means聚类算法对样本进行初始聚类,根据每类中样本数及其稀疏程度选取一些点作为标记的学习样本训练SVM分类器,然后用SVM对原始数据重新分类.Iris数据和遥感数据的实验结果均验证了新方法的有效性.  相似文献   

6.
入侵检测数据具有信息冗余量大、标记数据难以获得等特点。传统入侵检测方法难以消除冗余信息并且需要大量已标记样本做训练集,导致检测效率降低,实用性下降。为了解决上述问题,提出一种结合属性约简与半监督协同训练的算法。该算法充分发挥了大量未标记样本的监督作用。首先将入侵数据进行属性约简,利用约简结果建立一个支持向量机(SVM)基分类器,然后将其与另外两个SVM辅助分类器做协同训练。如此,分类器界面得到反复修正,分类器的性能逐步得到改善,最终分类精度得到明显提高。在入侵检测数据集KDDCUP99上的仿真实验结果表明,该算法不仅可以提高检测精度,同时还具有良好的可行性、稳定性。  相似文献   

7.
一种改进的主动支持向量机算法及其应用   总被引:1,自引:1,他引:0       下载免费PDF全文
针对支持向量机中分类器易受样本孤立点影响的问题,提出一种改进的主动支持向量机算法,采用K—means算法获取少量“代表性”样本作为训练样本,通过训练该标识样本得到一个初始分类器,利用主动学习策略选择最佳未标记样本进行类别标记,并加入训练样本集重新训练分类器,重复该过程直到满足某些要求。运用Iris数据和遥感数据对其进行测试,实验结果表明,该算法是有效的。  相似文献   

8.
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点.文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析.实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点.  相似文献   

9.
张雁  吕丹桔  吴保国 《微机发展》2013,(7):77-79,83
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。  相似文献   

10.
邬书跃  余杰  樊晓平 《计算机应用》2011,31(12):3337-3339
提出了在少量样本条件下,采用带变异因子的支持向量机(SVM)协作训练模型进行入侵检测的方法。充分利用大量未标记数据,通过两个分类器检测结果之间的迭代训练,可以提高检测算法的准确度和稳定性。在协作训练的多次迭代之间引入变异因子,减小由于过学习而降低训练效果的可能。仿真实验表明,该方法的检测准确度比传统的SVM算法提高了7.72%,并且对于训练数据集和测试数据集的依赖程度都较低。  相似文献   

11.
当标注样本匮乏时,半监督学习利用大量未标注样本解决标注瓶颈的问题,但由于未标注样本和标注样本来自不同领域,可能造成未标注样本存在质量问题,使得模型的泛化能力变差,导致分类精度下降.为此,基于wordMixup方法,提出针对未标注样本进行数据增强的u-wordMixup方法,结合一致性训练框架和Mean Teacher模型,提出一种基于u-wordMixup的半监督深度学习模型(semi-supervised deep learning model based on u-wordMixup,SD-uwM).该模型利用u-wordMixup方法对未标注样本进行数据增强,在有监督交叉熵和无监督一致性损失的约束下,能够提高未标注样本质量,减少过度拟合.在AGNews、THUCNews和20 Newsgroups数据集上的对比实验结果表明,所提出方法能够提高模型的泛化能力,同时有效提高时间性能.  相似文献   

12.
近年来,基于大规模标记数据集的深度神经网络模型在图像领域展现出优秀的性能,但是大量标记数据昂贵且难以收集。为了更好地利用无标记数据,提出了一种半监督学习方法Wasserstein consistency training(WCT), 通过引入Jensen-Shannon散度来模拟协同训练并组织大量未标记数据来提高协同训练效率,通过快速梯度符号攻击施加的对抗攻击来生成对抗样本以鼓励视图的差异,将Wasserstein距离作为网络差异约束的度量,以防止深度神经网络崩溃,使网络在低维流形空间上平滑输出。实验结果表明,所提方法在MNIST分类错误率为0.85%,在仅使用4?000个标记数据的CIFAR-10数据集上错误率达到11.96%,证明了所提方法在小样本条件下的半监督图像分类中具有较好的性能。  相似文献   

13.
针对目前归纳逻辑程序设计(inductive logic programming,ILP)系统要求训练数据充分且无法利用无标记数据的不足,提出了一种利用无标记数据学习一阶规则的算法——关系tri-training(relational-tri-training,R-tri-training)算法。该算法将基于命题逻辑表示的半监督学习算法tri-training的思想引入到基于一阶逻辑表示的ILP系统,在ILP框架下研究如何利用无标记样例信息辅助分类器训练。R-tri-training算法首先根据标记数据和背景知识初始化三个不同的ILP系统,然后迭代地用无标记样例对三个分类器进行精化,即如果两个分类器对一个无标记样例的标记结果一致,则在一定条件下该样例将被标记给另一个分类器作为新的训练样例。标准数据集上实验结果表明:R-tri-training能有效地利用无标记数据提高学习性能,且R-tri-training算法性能优于GILP(genetic inductive logic programming)、NFOIL、KFOIL和ALEPH。  相似文献   

14.
工业生产过程数据由于主导变量分析代价等因素可能出现有标签样本少而无标签样本多的情况,为提升对无标签样本利用的准确性与充分性,提出一种自训练框架下的三优选半监督回归算法。对无标签样本与有标签样本进行优选,保证两类数据的相似性,以提高无标签样本预测的准确性;利用高斯过程回归方法对所选有标签样本集建模,预测所选无标签样本集,得到伪标签样本集;通过对伪标签样本集置信度进行判断,优选出置信度高的样本用于更新初始样本集;为了进一步提高无标签样本利用的充分性,在自训练框架下,进行多次循环筛选提高无标签样本的利用率。通过对脱丁烷塔过程实际数据的建模仿真,验证了所提方法在较少有标签样本情况下的良好预测性能。  相似文献   

15.
Text Classification from Labeled and Unlabeled Documents using EM   总被引:51,自引:0,他引:51  
This paper shows that the accuracy of learned text classifiers can be improved by augmenting a small number of labeled training documents with a large pool of unlabeled documents. This is important because in many text classification problems obtaining training labels is expensive, while large quantities of unlabeled documents are readily available.We introduce an algorithm for learning from labeled and unlabeled documents based on the combination of Expectation-Maximization (EM) and a naive Bayes classifier. The algorithm first trains a classifier using the available labeled documents, and probabilistically labels the unlabeled documents. It then trains a new classifier using the labels for all the documents, and iterates to convergence. This basic EM procedure works well when the data conform to the generative assumptions of the model. However these assumptions are often violated in practice, and poor performance can result. We present two extensions to the algorithm that improve classification accuracy under these conditions: (1) a weighting factor to modulate the contribution of the unlabeled data, and (2) the use of multiple mixture components per class. Experimental results, obtained using text from three different real-world tasks, show that the use of unlabeled data reduces classification error by up to 30%.  相似文献   

16.
半监督学习中当未标注样本与标注样本分布不同时,将导致分类器偏离目标数据的主题,降低分类器的正确性.文中采用迁移学习技术,提出一种TranCo-Training分类模型.每次迭代,根据每个未标注样本与其近邻标注样本的分类一致性计算其迁移能力,并根据迁移能力从辅助数据集向目标数据集迁移实例.理论分析表明,辅助样本的迁移能力与其训练错误损失成反比,该方法能将训练错误损失最小化,避免负迁移,从而解决半监督学习中的主题偏离问题.实验表明,TranCo-Training优于随机选择未标注样本的RdCo-Training算法,尤其是给定少量的标注目标样本和大量的辅助未标注样本时.  相似文献   

17.
孔志周  蔡自兴 《控制与决策》2011,26(11):1616-1620
针对半监督学习中未标记示例导致性能下降的问题,提出一种新的协同训练算法LDL-tri-training.首先通过最小显著性差异(LSD)假设检验方法使得3个成员分类器两两之间具有显著性差异;然后采用D-S证据理论提高标注的稳定性;最后利用局部异常因子检测算法剔除误标记的噪声样本.实验表明,与其他方法相比,LDL-tri-training算法具有较高的分类精度和稳定性.  相似文献   

18.
一个好的核函数能提升机器学习模型的有效性,但核函数的选择并不容易,其与问题背景密切相关,且依赖于领域知识和经验。核学习是一种通过训练数据集寻找最优核函数的机器学习方法,能通过有监督学习的方式寻找到一组基核函数的最优加权组合。考虑到训练数据集获取标签的代价,提出一种基于标签传播的半监督核学习方法,该方法能够同时利用有标签数据和无标签数据进行核学习,通过半监督学习中被广泛使用的标签传播方法结合和谐函数获得数据集统一的标签分布。在UCI数据集上对提出的算法进行性能评估,结果表明该方法是有效的。  相似文献   

19.
Traditional classifiers including support vector machines use only labeled data in training. However, labeled instances are often difficult, costly, or time consuming to obtain while unlabeled instances are relatively easy to collect. The goal of semi-supervised learning is to improve the classification accuracy by using unlabeled data together with a few labeled data in training classifiers. Recently, the Laplacian support vector machine has been proposed as an extension of the support vector machine to semi-supervised learning. The Laplacian support vector machine has drawbacks in its interpretability as the support vector machine has. Also it performs poorly when there are many non-informative features in the training data because the final classifier is expressed as a linear combination of informative as well as non-informative features. We introduce a variant of the Laplacian support vector machine that is capable of feature selection based on functional analysis of variance decomposition. Through synthetic and benchmark data analysis, we illustrate that our method can be a useful tool in semi-supervised learning.  相似文献   

20.
Semi-supervised learning constructs the predictive model by learning from a few labeled training examples and a large pool of unlabeled ones. It has a wide range of application scenarios and has attracted much attention in the past decades. However, it is noteworthy that although the learning performance is expected to be improved by exploiting unlabeled data, some empirical studies show that there are situations where the use of unlabeled data may degenerate the performance. Thus, it is advisable to be able to exploit unlabeled data safely. This article reviews some research progress of safe semi-supervised learning, focusing on three types of safeness issue: data quality, where the training data is risky or of low-quality;model uncertainty, where the learning algorithm fails to handle the uncertainty during training; measure diversity, where the safe performance could be adapted to diverse measures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号