首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
In this paper, a low‐complexity robust estimation‐free decentralized prescribed performance control scheme is proposed and analyzed for nonaffine nonlinear large‐scale systems in the presence of unknown nonlinearity and external disturbance. To tackle the high‐order dynamics of each tracking error subsystem, a time‐varying stable manifold involving the output tracking error and its high‐order derivatives is constructed, which is strictly evolved within the envelope of user‐specialized prescribed performance. Sequentially, a robust decentralized controller is devised for each manifold, under which the output tracking error and its high‐order derivatives are proven to converge asymptotically to a small residual domain with prescribed fast convergence rate. Additionally, no specialized approximation technique, adaptive scheme, and disturbance observer are needed, which alleviates the complexity and difficulty of robust decentralized controller design dramatically. Finally, 3 groups of illustrative examples are used to validate the effectiveness of the proposed low‐complexity robust decentralized control scheme for uncertain nonaffine nonlinear large‐scale systems.  相似文献   

2.
那靖  董宇  丁海港  韩世昌 《控制与决策》2020,35(5):1077-1084
针对含有未知动态(如:执行机构、负载等)液压伺服系统,提出一种基于未知系统动态估计器的输出反馈控制方法.该方法不依赖于函数逼近器和传统反步控制设计,且无需难以测量的系统内部状态.首先,为避免反步控制和系统全部状态,引入等价变换,将含液压执行机构的伺服系统高阶严格反馈模型转化为Brunovsky标准型,进而运用高阶滑模微分器观测转化后的系统未知状态.控制器设计中引入描述收敛速率、最大超调量和稳态误差的性能函数,保证预设控制系统稳态和瞬态控制性能.为补偿系统集总未知动态影响,设计一种仅含一个调节参数并保证指数收敛的未知系统动态估计器.该输出反馈控制器可以实现对系统输出的精确跟踪控制.最后,通过数值仿真结果表明了所提出算法的有效性.  相似文献   

3.
An adaptive prescribed performance control design procedure for a class of nonlinear pure‐feedback systems with both unknown vector parameters and unmodeled dynamics is presented. The unmodeled dynamics lie within some bounded functions, which are assumed to be partially known. A state transformation and an auxiliary system are proposed to avoid using the cumbersome formula to handle the nonaffine structure. Simultaneously, a parameter‐type Lyapunov function and L function are designed to ensure the prescribed performance of the pure‐feedback system. As illustrated by examples, the proposed adaptive prescribed performance control scheme is shown to guarantee global uniform ultimate boundedness. At the same time, this method not only guarantees the prescribed performance of the system but also makes the tracking error asymptotically close to a certain value or stable.  相似文献   

4.
This paper focuses on the leader-following consensus control problem of stochastic multi-agent systems with hysteresis inputs and nonlinear dynamics. A leader-following consensus scheme is presented for stochastic multi-agent systems directions under directed graphs, which can achieve predefined synchronisation error bounds. By mainly activating an auxiliary robust control component for pulling back the transient escaped from the neural active region, a multi-switching robust neuro adaptive controller in the neural approximation domain, which can achieve globally uniformly ultimately bounded tracking stability of multi-agent systems recently. A specific Nussbaum-type function is introduced to solve the problem of unknown control directions. Using a dynamic surface control technique, distributed consensus controllers are developed to guarantee that the outputs of all followers synchronise with that of the leader with prescribed performance. Based on Lyapunov stability theory, it is proved that all signals in closed-loop systems are uniformly ultimately bounded and all the follower agents can keep consensus with the leader. Two simulation examples are provided to illustrate the effectiveness and advantage of the proposed control scheme.  相似文献   

5.
A universal, approximation-free state feedback control scheme is designed for unknown pure feedback systems, capable of guaranteeing, for any initial system condition, output tracking with prescribed performance and bounded closed loop signals. By prescribed performance, it is meant that the output error converges to a predefined arbitrarily small residual set, with convergence rate no less than a certain prespecified value, having maximum overshoot less than a preassigned level. The proposed state feedback controller isolates the aforementioned output performance characteristics from control gains selection and exhibits strong robustness against model uncertainties, while completely avoiding the explosion of complexity issue raised by backstepping-like approaches that are typically employed to the control of pure feedback systems. In this respect, a low complexity design is achieved. Moreover, the controllability assumptions reported in the relevant literature are further relaxed, thus enlarging the class of pure feedback systems that can be considered. Finally, simulation studies clarify and verify the approach.  相似文献   

6.
This paper studies the output feedback tracking control problem for a class of strict‐feedback uncertain nonlinear systems with full state constraints and unmodeled dynamics using a prescribed performance adaptive neural dynamic surface control design approach. A nonlinear mapping technique is employed to address the state constraints. Radial basis function neural networks are utilized to approximate the unknown nonlinear functions. The unmodeled dynamics is addressed by introducing an available dynamic signal. Subsequently, we construct the controller and parameter adaptive laws using a backstepping technique. Based on Lyapunov stability theory, it is shown that all signals in the closed‐loop system are semiglobally uniformly ultimately bounded and that the tracking error always remains within the prescribed performance bound. Simulation results are presented to demonstrate the effectiveness of the proposed control scheme.  相似文献   

7.
A set membership method for right inversion of nonlinear systems from data is proposed in the paper. Both the cases where the system to invert is known or unknown and therefore identified from data are addressed. The method does not require the invertibility of the regression function describing the system and ensures tight bounds on the inversion error. In the case of unknown system, the method allows the derivation of a robust right‐inverse, guaranteeing the inversion error bound for all the systems belonging to the uncertainty set which can be defined from the available prior and experimental information. Based on such a set membership inversion, two methods for robust control of nonlinear systems from data are introduced: nonlinear feed‐forward control (NFFC) and nonlinear internal model control (NIMC). Both the design methods ensure robust stability and bounded tracking errors for all the systems belonging to the involved uncertainty set. Two applicative examples of robust control from data are presented: NFFC control of semi‐active suspension systems and NIMC control of vehicle lateral dynamics.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, an adaptive prescribed performance output-feedback control scheme is proposed for a class of switched nonlinear systems with input saturation. The MT-filters are employed to estimate the unmeasured states and the unknown functions are approximated by the radial basis function neural networks in controller design procedure. It is proved that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error satisfies the prescribed performance. Finally, simulation results are given to illustrate the effectiveness of the proposed approach.  相似文献   

9.
控制方向未知的时变非线性系统鲁棒控制   总被引:6,自引:0,他引:6  
陈刚  王树青 《控制与决策》2005,20(12):1397-1400
针对一类具有未知时变控制方向、不确定时变参数以及未知时变有界干扰的严反馈非线性系统,给出一种带有死区修正算法的鲁棒控制方法.在控制系数符号未知的情况下,通过在反步法中引入Nussbaum增益和死区修正技术,得到一种修正的鲁棒反步设计方法.该方法不需要未知时变控制系数的上下界先验知识以及不确定参数和外界干扰的上界信息.算法保证了闭环系统所有信号的有界性,同时使得跟踪误差收敛于零的任意小邻域内.  相似文献   

10.
This paper presents an adaptive neural tracking control scheme for strict-feedback stochastic nonlinear systems with guaranteed transient and steady-state performance under arbitrary switchings. First, by utilising the prescribed performance control, the prescribed tracking control performance can be ensured, while the requirement for the initial error is removed. Second, radial basis function neural networks approximation are used to handle unknown nonlinear functions and stochastic disturbances. At last, by using the common Lyapunov function method and the backstepping technique, a common adaptive neural controller is constructed. The designed controller overcomes the problem of the over-parameterisation, and further alleviates the computational burden. Under the proposed common adaptive controller, all the signals in the closed-loop system are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded, and the prescribed tracking control performance are guaranteed under arbitrary switchings. Three examples are presented to further illustrate the effectiveness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号