首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
提高软非周期任务响应性能的调度算法   总被引:9,自引:0,他引:9  
何军  孙玉方 《软件学报》1998,9(10):721-727
实时环境中常常既包含硬周期任务,又包含软非周期任务,引入一种改进软非周期实时任务响应时间的算法.已有的解决混合任务调度问题的方法都是基于速率单调(Rate Monotonic)策略的,其中从周期任务“挪用时间”的算法被证明优于其他所有算法.但是,速率单调算法限制了处理器的使用率,从而使周期任务的可“挪用”时间受到限制.最后期限驱动(Deadline Driven)策略DD可使潜在的处理器利用率达到100%.新算法正是在周期任务的调度中适当加入了DD策略,从而使非周期任务的响应时间得以缩短.仿真实验的结果表明,这种算法的性能优于已有的所有算法,而由它所带来的额外开销却不算很高.  相似文献   

2.
Aperiodic task scheduling for Hard-Real-Time systems   总被引:22,自引:5,他引:17  
A real-time system consists of both aperiodic and periodic tasks. Periodic tasks have regular arrival times and hard deadlines. Aperiodic tasks have irregular arrival times and either soft or hard deadlines. In this article, we present a new algorithm, the Sporadic Server algorithm, which greatly improves response times for soft deadline aperiodic tasks and can guarantee hard deadlines for both periodic and aperiodic tasks. The operation of the Sporadic Server algorithm, its performance, and schedulability analysis are discussed and compared with previously published aperiodic service algorithms.  相似文献   

3.
现有的硬实时周期任务和非周期任务的混合调度方法都没有保证非周期任务的实时性,所以不适合调度具有强实时要求的偶发任务.通过分析和计算EDF算法调度偶发任务所占用的空闲时间和挪用时间,以及调度后对空闲时间和最大可挪用时间的影响,提出一种采用EDF算法统一调度硬实时周期任务和偶发任务时的可调度性充分判定算法.最后用仿真实验得出了该算法在不同系统负载下的判定准确率和偶发任务的平均响应时间.  相似文献   

4.
The paper addresses the problem of jointly scheduling tasks with both hard and soft real time constraints. We present a new analysis applicable to systems scheduled using a priority preemptive dispatcher, with priorities assigned dynamically according to the EDF policy. Further, we present a new efficient online algorithm (the acceptor algorithm) for servicing aperiodic work load. The acceptor transforms a soft aperiodic task into a hard one by assigning a deadline. Once transformed, aperiodic tasks are handled in exactly the same way as periodic tasks with hard deadlines. The proposed algorithm is shown to be optimal in terms of providing the shortest aperiodic response time among fixed and dynamic priority schedulers. It always guarantees the proper execution of periodic hard tasks. The approach is composed of two parts: an offline analysis and a run time scheduler. The offline algorithm runs in pseudopolynomial time O(mn), where n is the number of hard periodic tasks and m is the hyperperiod/min deadline  相似文献   

5.
The dual-priority is a scheduling policy providing the guarantees needed by periodic or sporadic hard real-time tasks while decreasing the response time for aperiodic soft real-time tasks. This scheduling policy can be applied to message scheduling and its performance on controller area network (CAN) will be assessed. Nevertheless, when used in an electromagnetic stressed environment (e.g. automotive communication) leading to transmission errors, this scheduling strategy could lead to serious disappointments. It will be explained why the hard real-time traffic is highly sensitive to transmission errors. The risks of deadline failure will be quantified and a simple mechanism that provides probabilistic guarantees to prevent hard real-time frames from missing their deadlines, will be proposed. This mechanism is compared in terms of performance to the original dual-priority strategy. The chosen performance metrics are the deadline failure probability for hard real-time traffic, the average response time and the variance in response time for soft real-time traffic.  相似文献   

6.
服务器执行任务产生的能耗是云计算系统动态能耗的重要组成部分。为降低云计算系统任务执行的总能耗,提出了一种基于能耗优化的最早完成时间任务调度方法,建立了服务器动态功率计算模型,基于动态功率的服务器执行能耗模型,以及云计算系统的能耗优化模型。调度策略根据任务的截止时间要求和在不同服务器上的执行能耗,选择不同的调度算法,以获得最小任务执行总能耗。实验结果证明,提出的任务调度方法,能够较好地满足任务截止时间的要求,降低云计算系统任务执行的总能耗。  相似文献   

7.
In this paper, we address the problem of scheduling hybrid task sets consisting of hard periodic and soft aperiodic tasks that may share resources in exclusive mode in a dynamic environment, where tasks are scheduled based on their deadlines. Bounded blocking on exclusive resources is achieved by means of a dynamic resource access protocol which also prevents deadlocks and chained blocking. Aperiodic responsiveness is enhanced by an efficient servicing technique which assigns each aperiodic request a suitable deadline. Feasibility conditions are extended to handle tasks with deadlines different from periods and a reclaiming technique is presented to deal with early completions.  相似文献   

8.
实时系统中的非定期任务调度算法综述   总被引:7,自引:2,他引:7  
非定期任务调度是实时系统中的一个重要研究内容,综述了实时系统中非定期任务调度算法的研究与进展,按照这些算法的特征分为基于服务器的算法与基于空闲时间的算法两大类别,并着重对每个类别中的不同算法的特征与性能进行了分析,通过对这些算法的比较与分析,希望为实时系统的研究与开发者提供有意义的参考,最后还给出了非定期任务调度进一步研究的思路与建议。  相似文献   

9.
提出了在实时环境下周期任务与非周期任务混合调度的一种新方法。引入非周期实时任务虚拟截止期、虚拟周期的特征参数,综合考虑各实时任务的多特征参数进行优先级设计,克服了单独考虑任务的个别参数以及忽略非周期任务自身特征的调度策略的局限性及调度风险,且能够尽可能地加快非周期任务的响应速度,提高系统整体的调度性能。将该方法在RT-Linux实时环境中实现,并针对无人飞艇的自动驾驶仪进行了任务实例的可调度性测试,证明了该调度策略的可行性。  相似文献   

10.
Rate monotonic and deadline monotonic scheduling are commonly used for periodic real-time task systems. This paper discusses a feasibility decision for a given real-time task system when the system is scheduled by rate monotonic and deadline monotonic scheduling. The time complexity of existing feasibility decision algorithms depends on both the number of tasks and maximum periods or deadlines when the periods and deadlines are integers. This paper presents a new necessary and sufficient condition for a given task system to be feasible and proposes a new feasibility decision algorithm based on that condition. The time complexity of this algorithm depends solely on the number of tasks. This condition can also be applied as a sufficient condition for a task system using priority inheritance protocols to be feasible with rate monotonic and deadline monotonic scheduling.  相似文献   

11.
基于动态优先级策略的最优软非周期任务调度算法   总被引:9,自引:0,他引:9  
周期任务与非周期任务的混合调度是实时调度研究的一个重要方向 通过定义“调度”和“逆调度” ,对实时周期任务集在使用EDF算法调度时的可挪用时间进行分析 ,求出了周期任务集在使用EDF调度时的最大可挪用时间 在此基础上 ,提出用于缩短非周期任务响应时间和周转时间的调度算法———ISA(idlestealingalgorithm) ISA算法充分使用最大可挪用时间 ,在保证周期任务满足最后期限的同时能取得非周期任务的最优响应时间和周转时间 证明了ISA算法的最优性 ,并使用仿真实验进行了性能验证  相似文献   

12.
The purpose of this paper is to define a series of requirements and associated experiments called the Hartstone Uniprocessor Benchmark (HUB), to be used in testing the ability of a uniprocessor system to handle certain types of hard real-time applications. The benchmark model considers the real-time system as a set of periodic, aperiodic (sporadic), and synchronization (server) tasks. The tasks are characterized by their execution times (workloads), and deadlines. There are five series of experiments defined. They are, in order of increasing complexity, PH (Periodic Tasks, Harmonic Frequencies), PN (Periodic Tasks, Nonharmonic Frequencies), AH (Periodic Tasks with Aperiodic Processing), SH (Periodic Tasks with Synchronization), and SA (Periodic Tasks with Aperiodic Processing and Synchronization). The general stopping criteria of the experiments is defined as follows: Change one of the following four task set parameters: number of tasks, execution time(s), blocking time(s), or deadline(s) until a given task set is no longer schedulable, i.e., a deadline is missed. The derivation of the Hartstone experiments from one static scheduling algorithm (Rate Monotonic) and one dynamic scheduling algorithm (Earliest Deadline First) is presented. Because of its high-level application view of the underlying hardware and real-time system software the Hartstone experiments can be used for fast prototyping of real-time applications. Implementation of such benchmarks is useful in evaluating scheduling algorithms, scheduling protocols, and design paradigms, as well as evaluating real-time languages, the tasking system of compilers, real-time operating systems, and hardware configurations.  相似文献   

13.
刘云生  陈怡 《计算机工程》2003,29(7):35-36,142
针对硬实时环境的特点,提出了一种新的利用任务截止期来管理缓冲区的方法,前提是该环境下使用最早截止期优先的任务调度算法。该截止期缓冲区管理方法的主要特点是:在保证周期任务的缓冲区可用的同时,有效利用缓冲区资源,得到最佳的非周期实时任务缓冲区请求响应。详细讨论了该方法及其实现。  相似文献   

14.
Many time-critical applications require predictable performance and tasks in these applications have deadlines to be met. For tasks with hard deadlines, a deadline miss can be catastrophic while for Quality of Service (QoS) degradable tasks (soft real-time tasks) timely approximate results of poorer quality or occasional deadline misses are acceptable. Imprecise computation and (m,k)-firm guarantee are two workload models that quantify the trade-off between schedulability and result quality. In this paper, we propose dynamic scheduling algorithms for integrated scheduling of real-time tasks, represented by these workload models, in multiprocessor systems. The algorithms aim at improving the schedulability of tasks by exploiting the properties of these models in QoS degradation. We also show how the proposed algorithms can be adapted for integrated scheduling of multimedia streams and hard real-time tasks, and demonstrate their effectiveness in quantifying QoS degradation. Through simulation, we evaluate the performance of these algorithms using the metrics – success ratio (measure of schedulability) and quality. Our simulation results show that one of the proposed algorithms, multilevel degradation algorithm, outperforms the others in terms of both the performance metrics.  相似文献   

15.
Utilization Bounds for EDF Scheduling on Real-Time Multiprocessor Systems   总被引:1,自引:3,他引:1  
The utilization bound for earliest deadline first (EDF) scheduling is extended from uniprocessors to homogeneous multiprocessor systems with partitioning strategies. First results are provided for a basic task model, which includes periodic and independent tasks with deadlines equal to periods. Since the multiprocessor utilization bounds depend on the allocation algorithm, different allocation algorithms have been considered, ranging from simple heuristics to optimal allocation algorithms. As multiprocessor utilization bounds for EDF scheduling depend strongly on task sizes, all these bounds have been obtained as a function of a parameter which takes task sizes into account. Theoretically, the utilization bounds for multiprocessor EDF scheduling can be considered a partial solution to the bin-packing problem, which is known to be NP-complete. The basic task model is extended to include resource sharing, release jitter, deadlines less than periods, aperiodic tasks, non-preemptive sections, context switches, and mode changes.  相似文献   

16.
Many time-critical applications require predictable performance and tasks in these applications have deadlines to be met. In this paper, we propose an efficient algorithm for nonpreemptive scheduling of dynamically arriving real-time tasks (aperiodic tasks) in multiprocessor systems. A real-time task is characterized by its deadline, resource requirements, and worst case computation time on p processors, where p is the degree of parallelization of the task. We use this parallelism in tasks to meet their deadlines and, thus, obtain better schedulability compared to nonparallelizable task scheduling algorithms. To study the effectiveness of the proposed scheduling algorithm, we have conducted extensive simulation studies and compared its performance with the myopic scheduling algorithm. The simulation studies show that the schedulability of the proposed algorithm is always higher than that of the myopic algorithm for a wide variety of task parameters  相似文献   

17.
In this paper, we address the problem of the dynamic scheduling of skippable periodic task sets (i.e., period tasks allowing occasional skips of instances), together with aperiodic tasks. Scheduling of tasks is handled thanks to the merging of two existing approaches: the Skip-Over task model and the EDL (Earliest Deadline as Late as possible) aperiodic task server. The objective is to provide two on-line scheduling algorithms, namely EDL-RTO and EDL-BWP, in order to minimize the average response time of soft aperiodic requests, while ensuring that the QoS (Quality of Service) of periodic tasks will never be less than a specified bound. We also extend our results to the acceptance of sporadic tasks (i.e., aperiodic tasks with deadlines). We show that these novel scheduling algorithms have better performance compared to related algorithms regarding aperiodic response time and acceptance ratio. Audrey Marchand guaduated in Computer Engineering at the Ecole polytechnique of the University of Nantes (France), in 2002. She is currently a PhD student at the University of Nantes. Her research interests include real-time scheduling theory, aperiodic service mechanisms, quality of service guarantees in soft real-time systems, and Linux-based real-time operating systems and applications. Maryline Chetto received the degree of Docteur de 3ème cycle in control engineering and the degree of Habilitée à Diriger des Recherches in Computer Science from the University of Nantes, France, in 1984 and 1993, respectively. From 1984 to 1985, she held the position of Assistant professor of Computer Science at the University of Rennes, while her research was with the Institut de Recherche en Informatique et Systèmes Aléatoires, Rennes. In 1986, she returned to Nantes and is currently a professor with the Institute of Technology of the University of Nantes. She is conducting her research at IRCCyN. Her main research interests include scheduling and fault-tolerance technologies for real-time applications. She has published more than 60 journal articles and conference papers in the area of real-time operating systems. She is the leader of a French national R&D project, namely Cleopatre, supported by the French government, which aims to provide free open source real-time solutions.  相似文献   

18.
对于具有相关性的任务,调度顺序不合理将影响任务的执行时间和实时性。结合物联网终端任务间依赖关系复杂的特点提出了一种利用任务相关性的调度策略。该策略设计了以作业轮询组为主体的任务模型,根据任务时限建立了优先级因子矩阵作为任务调度的凭据,对于周期任务,在每个任务执行完毕后生成,以任务相关性为参数的增量矩阵用以动态修改任务优先级,使前驱任务能优先执行;对于非周期任务采用了构建临时作业轮询组的方式进行抢占调度。测试结果表明,该策略能够有效减少具有相关性的周期任务集执行时间和调度失败次数,缩短非周期任务响应时间。  相似文献   

19.
In a real-time system with both hard real-time periodic jobs and soft real-time aperiodic jobs, it is important to guarantee that the deadline of each periodic job is met, as well as to provide a fast response time for each aperiodic job. We propose an algorithm, called Proportional Slack Reserve (PSR), that produces an efficient schedule for such an environment. For every execution unit of a periodic job, the PSR algorithm reserves time which can be used for execution of aperiodic jobs. If reserved time is not available, the algorithm assigns a deadline to an aperiodic job for achieving better responsiveness of aperiodic jobs. The proposed algorithm can fully utilize processing power while meeting all deadlines of periodic jobs. It can also easily reclaim the time unused by the periodic job. We analytically show that for each aperiodic job, the response time in a PSR schedule is no longer than that in a TBS schedule, which is known to be efficient for servicing aperiodic jobs. We also present simulation results in which the response time of PSR is significantly improved over that of TBS, and moreover the performance of PSR compares favorably with TB(N) considering scheduling overhead.  相似文献   

20.
在边缘计算场景中,通过将部分待执行任务卸载到边缘服务器执行能够达到降低移动设备的负载、提升移动应用性能和减少设备开销的目的.对于时延敏感任务,只有在截止期限内完成才具有实际意义.但是边缘服务器的资源往往有限,当同时接收来自多个设备的数据传输及处理任务时,可能造成任务长时间的排队等待,导致部分任务因超时而执行失败,因此无法兼顾多个设备的性能目标.鉴于此,在计算卸载的基础上优化边缘服务器端的任务调度顺序.一方面,将时延感知的任务调度建模为一个长期优化问题,并使用基于组合多臂赌博机的在线学习方法动态调整服务器的调度顺序.另一方面,由于不同的任务执行顺序会改变任务卸载性能提升程度,因而影响任务卸载决策的有效性.为了增加卸载策略的鲁棒性,采用了带有扰动回报的深度Q学习方法决定任务执行位置.仿真算例证明了该策略可在平衡多个用户目标的同时减少系统的整体开销.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号